亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We introduce the extremal range, a local statistic for studying the spatial extent of extreme events in random fields on $\mathbb{R}^2$. Conditioned on exceedance of a high threshold at a location $s$, the extremal range at $s$ is the random variable defined as the smallest distance from $s$ to a location where there is a non-exceedance. We leverage tools from excursion-set theory to study distributional properties of the extremal range, propose parametric models and predict the median extremal range at extreme threshold levels. The extremal range captures the rate at which the spatial extent of conditional extreme events scales for increasingly high thresholds, and we relate its distributional properties with the bivariate tail dependence coefficient and the extremal index of time series in classical Extreme-Value Theory. Consistent estimation of the distribution function of the extremal range for stationary random fields is proven. For non-stationary random fields, we implement generalized additive median regression to predict extremal-range maps at very high threshold levels. An application to two large daily temperature datasets, namely reanalyses and climate-model simulations for France, highlights decreasing extremal dependence for increasing threshold levels and reveals strong differences in joint tail decay rates between reanalyses and simulations.

相關內容

Positron Emission Tomography (PET) enables functional imaging of deep brain structures, but the bulk and weight of current systems preclude their use during many natural human activities, such as locomotion. The proposed long-term solution is to construct a robotic system that can support an imaging system surrounding the subject's head, and then move the system to accommodate natural motion. This requires a system to measure the motion of the head with respect to the imaging ring, for use by both the robotic system and the image reconstruction software. We report here the design and experimental evaluation of a parallel string encoder mechanism for sensing this motion. Our preliminary results indicate that the measurement system may achieve accuracy within 0.5 mm, especially for small motions, with improved accuracy possible through kinematic calibration.

We study the numerical approximation of multidimensional stochastic differential equations (SDEs) with distributional drift, driven by a fractional Brownian motion. We work under the Catellier-Gubinelli condition for strong well-posedness, which assumes that the regularity of the drift is strictly greater than $1-1/(2H)$, where $H$ is the Hurst parameter of the noise. The focus here is on the case $H<1/2$, allowing the drift $b$ to be a distribution. We compare the solution $X$ of the SDE with drift $b$ and its tamed Euler scheme with mollified drift $b^n$, to obtain an explicit rate of convergence for the strong error. This extends previous results where $b$ was assumed to be a bounded measurable function. In addition, we investigate the limit case when the regularity of the drift is equal to $1-1/(2H)$, and obtain a non-explicit rate of convergence. As a byproduct of this convergence, there exists a strong solution that is pathwise unique in a class of H\"older continuous solutions. The proofs rely on stochastic sewing techniques, especially to deduce new regularising properties of the discrete-time fractional Brownian motion. In the limit case, we introduce a critical Gr\"onwall-type lemma to quantify the error. We also present several examples and numerical simulations that illustrate our results.

In semi-supervised learning, the prevailing understanding suggests that observing additional unlabeled samples improves estimation accuracy for linear parameters only in the case of model misspecification. This paper challenges this notion, demonstrating its inaccuracy in high dimensions. Initially focusing on a dense scenario, we introduce robust semi-supervised estimators for the regression coefficient without relying on sparse structures in the population slope. Even when the true underlying model is linear, we show that leveraging information from large-scale unlabeled data improves both estimation accuracy and inference robustness. Moreover, we propose semi-supervised methods with further enhanced efficiency in scenarios with a sparse linear slope. Diverging from the standard semi-supervised literature, we also allow for covariate shift. The performance of the proposed methods is illustrated through extensive numerical studies, including simulations and a real-data application to the AIDS Clinical Trials Group Protocol 175 (ACTG175).

Three variants of the statistical complexity function, which is used as a criterion in the problem of detection of a useful signal in the signal-noise mixture, are considered. The probability distributions maximizing the considered variants of statistical complexity are obtained analytically and conclusions about the efficiency of using one or another variant for detection problem are made. The comparison of considered information characteristics is shown and analytical results are illustrated on an example of synthesized signals. A method is proposed for selecting the threshold of the information criterion, which can be used in decision rule for useful signal detection in the signal-noise mixture. The choice of the threshold depends a priori on the analytically obtained maximum values. As a result, the complexity based on the total variation demonstrates the best ability of useful signal detection.

We prove discrete-to-continuum convergence for dynamical optimal transport on $\mathbb{Z}^d$-periodic graphs with energy density having linear growth at infinity. This result provides an answer to a problem left open by Gladbach, Kopfer, Maas, and Portinale (Calc Var Partial Differential Equations 62(5), 2023), where the convergence behaviour of discrete boundary-value dynamical transport problems is proved under the stronger assumption of superlinear growth. Our result extends the known literature to some important classes of examples, such as scaling limits of 1-Wasserstein transport problems. Similarly to what happens in the quadratic case, the geometry of the graph plays a crucial role in the structure of the limit cost function, as we discuss in the final part of this work, which includes some visual representations.

We study the optimal sample complexity of neighbourhood selection in linear structural equation models, and compare this to best subset selection (BSS) for linear models under general design. We show by example that -- even when the structure is \emph{unknown} -- the existence of underlying structure can reduce the sample complexity of neighbourhood selection. This result is complicated by the possibility of path cancellation, which we study in detail, and show that improvements are still possible in the presence of path cancellation. Finally, we support these theoretical observations with experiments. The proof introduces a modified BSS estimator, called klBSS, and compares its performance to BSS. The analysis of klBSS may also be of independent interest since it applies to arbitrary structured models, not necessarily those induced by a structural equation model. Our results have implications for structure learning in graphical models, which often relies on neighbourhood selection as a subroutine.

Threshold selection is a fundamental problem in any threshold-based extreme value analysis. While models are asymptotically motivated, selecting an appropriate threshold for finite samples can be difficult through standard methods. Inference can also be highly sensitive to the choice of threshold. Too low a threshold choice leads to bias in the fit of the extreme value model, while too high a choice leads to unnecessary additional uncertainty in the estimation of model parameters. In this paper, we develop a novel methodology for automated threshold selection that directly tackles this bias-variance trade-off. We also develop a method to account for the uncertainty in this threshold choice and propagate this uncertainty through to high quantile inference. Through a simulation study, we demonstrate the effectiveness of our method for threshold selection and subsequent extreme quantile estimation. We apply our method to the well-known, troublesome example of the River Nidd dataset.

We analyse the geometric instability of embeddings produced by graph neural networks (GNNs). Existing methods are only applicable for small graphs and lack context in the graph domain. We propose a simple, efficient and graph-native Graph Gram Index (GGI) to measure such instability which is invariant to permutation, orthogonal transformation, translation and order of evaluation. This allows us to study the varying instability behaviour of GNN embeddings on large graphs for both node classification and link prediction.

Modern high-throughput sequencing assays efficiently capture not only gene expression and different levels of gene regulation but also a multitude of genome variants. Focused analysis of alternative alleles of variable sites at homologous chromosomes of the human genome reveals allele-specific gene expression and allele-specific gene regulation by assessing allelic imbalance of read counts at individual sites. Here we formally describe an advanced statistical framework for detecting the allelic imbalance in allelic read counts at single-nucleotide variants detected in diverse omics studies (ChIP-Seq, ATAC-Seq, DNase-Seq, CAGE-Seq, and others). MIXALIME accounts for copy-number variants and aneuploidy, reference read mapping bias, and provides several scoring models to balance between sensitivity and specificity when scoring data with varying levels of experimental noise-caused overdispersion.

Linear regression and classification methods with repeated functional data are considered. For each statistical unit in the sample, a real-valued parameter is observed over time under different conditions. Two regression methods based on fusion penalties are presented. The first one is a generalization of the variable fusion methodology based on the 1-nearest neighbor. The second one, called group fusion lasso, assumes some grouping structure of conditions and allows for homogeneity among the regression coefficient functions within groups. A finite sample numerical simulation and an application on EEG data are presented.

北京阿比特科技有限公司