亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We prove discrete-to-continuum convergence for dynamical optimal transport on $\mathbb{Z}^d$-periodic graphs with energy density having linear growth at infinity. This result provides an answer to a problem left open by Gladbach, Kopfer, Maas, and Portinale (Calc Var Partial Differential Equations 62(5), 2023), where the convergence behaviour of discrete boundary-value dynamical transport problems is proved under the stronger assumption of superlinear growth. Our result extends the known literature to some important classes of examples, such as scaling limits of 1-Wasserstein transport problems. Similarly to what happens in the quadratic case, the geometry of the graph plays a crucial role in the structure of the limit cost function, as we discuss in the final part of this work, which includes some visual representations.

相關內容

In this paper, we consider a numerical method for the multi-term Caputo-Fabrizio time-fractional diffusion equations (with orders $\alpha_i\in(0,1)$, $i=1,2,\cdots,n$). The proposed method employs a fast finite difference scheme to approximate multi-term fractional derivatives in time, requiring only $O(1)$ storage and $O(N_T)$ computational complexity, where $N_T$ denotes the total number of time steps. Then we use a Legendre spectral collocation method for spatial discretization. The stability and convergence of the scheme have been thoroughly discussed and rigorously established. We demonstrate that the proposed scheme is unconditionally stable and convergent with an order of $O(\left(\Delta t\right)^{2}+N^{-m})$, where $\Delta t$, $N$, and $m$ represent the timestep size, polynomial degree, and regularity in the spatial variable of the exact solution, respectively. Numerical results are presented to validate the theoretical predictions.

We study two-sample tests for relevant differences in persistence diagrams obtained from $L^p$-$m$-approximable data $(\mathcal{X}_t)_t$ and $(\mathcal{Y}_t)_t$. To this end, we compare variance estimates w.r.t.\ the Wasserstein metrics on the space of persistence diagrams. In detail, we consider two test procedures. The first compares the Fr{\'e}chet variances of the two samples based on estimators for the Fr{\'e}chet mean of the observed persistence diagrams $PD(\mathcal{X}_i)$ ($1\le i\le m$), resp., $PD(\mathcal{Y}_j)$ ($1\le j\le n$) of a given feature dimension. We use classical functional central limit theorems to establish consistency of the testing procedure. The second procedure relies on a comparison of the so-called independent copy variances of the respective samples. Technically, this leads to functional central limit theorems for U-statistics built on $L^p$-$m$-approximable sample data.

The most popular method for computing the matrix logarithm is a combination of the inverse scaling and squaring method in conjunction with a Pad\'e approximation, sometimes accompanied by the Schur decomposition. The main computational effort lies in matrix-matrix multiplications and left matrix division. In this work we illustrate that the number of such operations can be substantially reduced, by using a graph based representation of an efficient polynomial evaluation scheme. A technique to analyze the rounding error is proposed, and backward error analysis is adapted. We provide substantial simulations illustrating competitiveness both in terms of computation time and rounding errors.

Given $n$ copies of an unknown quantum state $\rho\in\mathbb{C}^{d\times d}$, quantum state certification is the task of determining whether $\rho=\rho_0$ or $\|\rho-\rho_0\|_1>\varepsilon$, where $\rho_0$ is a known reference state. We study quantum state certification using unentangled quantum measurements, namely measurements which operate only on one copy of $\rho$ at a time. When there is a common source of shared randomness available and the unentangled measurements are chosen based on this randomness, prior work has shown that $\Theta(d^{3/2}/\varepsilon^2)$ copies are necessary and sufficient. This holds even when the measurements are allowed to be chosen adaptively. We consider deterministic measurement schemes (as opposed to randomized) and demonstrate that ${\Theta}(d^2/\varepsilon^2)$ copies are necessary and sufficient for state certification. This shows a separation between algorithms with and without shared randomness. We develop a unified lower bound framework for both fixed and randomized measurements, under the same theoretical framework that relates the hardness of testing to the well-established L\"uders rule. More precisely, we obtain lower bounds for randomized and fixed schemes as a function of the eigenvalues of the L\"uders channel which characterizes one possible post-measurement state transformation.

The structured $\varepsilon$-stability radius is introduced as a quantity to assess the robustness of transient bounds of solutions to linear differential equations under structured perturbations of the matrix. This applies to general linear structures such as complex or real matrices with a given sparsity pattern or with restricted range and corange, or special classes such as Toeplitz matrices. The notion conceptually combines unstructured and structured pseudospectra in a joint pseudospectrum, allowing for the use of resolvent bounds as with unstructured pseudospectra and for structured perturbations as with structured pseudospectra. We propose and study an algorithm for computing the structured $\varepsilon$-stability radius. This algorithm solves eigenvalue optimization problems via suitably discretized rank-1 matrix differential equations that originate from a gradient system. The proposed algorithm has essentially the same computational cost as the known rank-1 algorithms for computing unstructured and structured stability radii. Numerical experiments illustrate the behavior of the algorithm.

We introduce a strict saddle property for $\ell_p$ regularized functions, and propose an iterative reweighted $\ell_1$ algorithm to solve the $\ell_p$ regularized problems. The algorithm is guaranteed to converge only to local minimizers when randomly initialized. The strict saddle property is shown generic on these sparse optimization problems. Those analyses as well as the proposed algorithm can be easily extended to general nonconvex regularized problems.

The present work deals with the numerical resolution of coupled 3D-2D problems arising from the simulation of fluid flow in fractured porous media modeled via the Discrete Fracture and Matrix (DFM) model. According to the DFM model, fractures are represented as planar interfaces immersed in a 3D porous matrix and can behave as preferential flow paths, in the case of conductive fractures, or can actually be a barrier for the flow, when, instead, the permeability in the normal-to-fracture direction is small compared to the permeability of the matrix. Consequently, the pressure solution in a DFM can be discontinuous across a barrier, as a result of the geometrical dimensional reduction operated on the fracture. The present work is aimed at developing a numerical scheme suitable for the simulation of the flow in a DFM with fractures and barriers, using a mesh for the 3D matrix non conforming to the fractures and that is ready for domain decomposition. This is achieved starting from a PDE-constrained optimization method, currently available in literature only for conductive fractures in a DFM. First, a novel formulation of the optimization problem is defined to account for non permeable fractures. These are described by a filtration-like coupling at the interface with the surrounding porous matrix. Also the extended finite element method with discontinuous enrichment functions is used to reproduce the pressure solution in the matrix around a barrier. The method is presented here in its simplest form, for clarity of exposition, i.e. considering the case of a single fracture in a 3D domain, also providing a proof of the well posedness of the resulting discrete problem. Four validation examples are proposed to show the viability and the effectiveness of the method.

We develop a numerical method for computing with orthogonal polynomials that are orthogonal on multiple, disjoint intervals for which analytical formulae are currently unknown. Our approach exploits the Fokas--Its--Kitaev Riemann--Hilbert representation of the orthogonal polynomials to produce an $\mathrm{O}(N)$ method to compute the first $N$ recurrence coefficients. The method can also be used for pointwise evaluation of the polynomials and their Cauchy transforms throughout the complex plane. The method encodes the singularity behavior of weight functions using weighted Cauchy integrals of Chebyshev polynomials. This greatly improves the efficiency of the method, outperforming other available techniques. We demonstrate the fast convergence of our method and present applications to integrable systems and approximation theory.

In this work, we study the Hermite interpolation on $n$-dimensional non-equally spaced, rectilinear grids over a field $\Bbbk $ of characteristic zero, given the values of the function at each point of the grid and the partial derivatives up to a maximum degree. First, we prove the uniqueness of the interpolating polynomial, and we further obtain a compact closed form that uses a single summation, irrespective of the dimensionality, which is algebraically simpler than the only alternative closed form for the $n$-dimensional classical Hermite interpolation [1]. We provide the remainder of the interpolation in integral form; we derive the ideal of the interpolation and express the interpolation remainder using only polynomial divisions, in the case of interpolating a polynomial function. Moreover, we prove the continuity of Hermite polynomials defined on adjacent $n$-dimensional grids, thus establishing spline behavior. Finally, we perform illustrative numerical examples to showcase the applicability and high accuracy of the proposed interpolant, in the simple case of few points, as well as hundreds of points on 3D-grids using a spline-like interpolation, which compares favorably to state-of-the-art spline interpolation methods.

Dirac delta distributionally sourced differential equations emerge in many dynamical physical systems from neuroscience to black hole perturbation theory. Most of these lack exact analytical solutions and are thus best tackled numerically. This work describes a generic numerical algorithm which constructs discontinuous spatial and temporal discretisations by operating on discontinuous Lagrange and Hermite interpolation formulae recovering higher order accuracy. It is shown by solving the distributionally sourced wave equation, which has analytical solutions, that numerical weak-form solutions can be recovered to high order accuracy by solving a first-order reduced system of ordinary differential equations. The method-of-lines framework is applied to the DiscoTEX algorithm i.e through discontinuous collocation with implicit-turned-explicit (IMTEX) integration methods which are symmetric and conserve symplectic structure. Furthermore, the main application of the algorithm is proved, for the first-time, by calculating the amplitude at any desired location within the numerical grid, including at the position (and at its right and left limit) where the wave- (or wave-like) equation is discontinuous via interpolation using DiscoTEX. This is shown, firstly by solving the wave- (or wave-like) equation and comparing the numerical weak-form solution to the exact solution. Finally, one shows how to reconstruct the scalar and gravitational metric perturbations from weak-form numerical solutions of a non-rotating black hole, which do not have known exact analytical solutions, and compare against state-of-the-art frequency domain results. One concludes by motivating how DiscoTEX, and related algorithms, open a promising new alternative Extreme-Mass-Ratio-Inspiral (EMRI)s waveform generation route via a self-consistent evolution for the gravitational self-force programme in the time-domain.

北京阿比特科技有限公司