Entangled states shared among distant nodes are frequently used in quantum network applications. When quantum resources are abundant, entangled states can be continuously distributed across the network, allowing nodes to consume them whenever necessary. This continuous distribution of entanglement enables quantum network applications to operate continuously while being regularly supplied with entangled states. Here, we focus on the steady-state performance analysis of protocols for continuous distribution of entanglement. We propose the virtual neighborhood size and the virtual node degree as performance metrics. We utilize the concept of Pareto optimality to formulate a multi-objective optimization problem to maximize the performance. As an example, we solve the problem for a quantum network with a tree topology. One of the main conclusions from our analysis is that the entanglement consumption rate has a greater impact on the protocol performance than the fidelity requirements. The metrics that we establish in this manuscript can be utilized to assess the feasibility of entanglement distribution protocols for large-scale quantum networks.
Advances in next-generation sequencing technology have enabled the high-throughput profiling of metagenomes and accelerated the microbiome study. Recently, there has been a rise in quantitative studies that aim to decipher the microbiome co-occurrence network and its underlying community structure based on metagenomic sequence data. Uncovering the complex microbiome community structure is essential to understanding the role of the microbiome in disease progression and susceptibility. Taxonomic abundance data generated from metagenomic sequencing technologies are high-dimensional and compositional, suffering from uneven sampling depth, over-dispersion, and zero-inflation. These characteristics often challenge the reliability of the current methods for microbiome community detection. To this end, we propose a Bayesian stochastic block model to study the microbiome co-occurrence network based on the recently developed modified centered-log ratio transformation tailored for microbiome data analysis. Our model allows us to incorporate taxonomic tree information using a Markov random field prior. The model parameters are jointly inferred by using Markov chain Monte Carlo sampling techniques. Our simulation study showed that the proposed approach performs better than competing methods even when taxonomic tree information is non-informative. We applied our approach to a real urinary microbiome dataset from postmenopausal women, the first time the urinary microbiome co-occurrence network structure has been studied. In summary, this statistical methodology provides a new tool for facilitating advanced microbiome studies.
We consider a broad class of random bipartite networks, the distribution of which is invariant under permutation within each type of nodes. We are interested in $U$-statistics defined on the adjacency matrix of such a network, for which we define a new type of Hoeffding decomposition. This decomposition enables us to characterize non-degenerate $U$-statistics -- which are then asymptotically normal -- and provides us with a natural and easy-to-implement estimator of their asymptotic variance. \\ We illustrate the use of this general approach on some typical random graph models and use it to estimate or test some quantities characterizing the topology of the associated network. We also assess the accuracy and the power of the proposed estimates or tests, via a simulation study.
The distribution regression problem encompasses many important statistics and machine learning tasks, and arises in a large range of applications. Among various existing approaches to tackle this problem, kernel methods have become a method of choice. Indeed, kernel distribution regression is both computationally favorable, and supported by a recent learning theory. This theory also tackles the two-stage sampling setting, where only samples from the input distributions are available. In this paper, we improve the learning theory of kernel distribution regression. We address kernels based on Hilbertian embeddings, that encompass most, if not all, of the existing approaches. We introduce the novel near-unbiased condition on the Hilbertian embeddings, that enables us to provide new error bounds on the effect of the two-stage sampling, thanks to a new analysis. We show that this near-unbiased condition holds for three important classes of kernels, based on optimal transport and mean embedding. As a consequence, we strictly improve the existing convergence rates for these kernels. Our setting and results are illustrated by numerical experiments.
Due to their intrinsic capabilities on parallel signal processing, optical neural networks (ONNs) have attracted extensive interests recently as a potential alternative to electronic artificial neural networks (ANNs) with reduced power consumption and low latency. Preliminary confirmation of the parallelism in optical computing has been widely done by applying the technology of wavelength division multiplexing (WDM) in the linear transformation part of neural networks. However, inter-channel crosstalk has obstructed WDM technologies to be deployed in nonlinear activation in ONNs. Here, we propose a universal WDM structure called multiplexed neuron sets (MNS) which apply WDM technologies to optical neurons and enable ONNs to be further compressed. A corresponding back-propagation (BP) training algorithm is proposed to alleviate or even cancel the influence of inter-channel crosstalk on MNS-based WDM-ONNs. For simplicity, semiconductor optical amplifiers (SOAs) are employed as an example of MNS to construct a WDM-ONN trained with the new algorithm. The result shows that the combination of MNS and the corresponding BP training algorithm significantly downsize the system and improve the energy efficiency to tens of times while giving similar performance to traditional ONNs.
Symbolic regression with polynomial neural networks and polynomial neural ordinary differential equations (ODEs) are two recent and powerful approaches for equation recovery of many science and engineering problems. However, these methods provide point estimates for the model parameters and are currently unable to accommodate noisy data. We address this challenge by developing and validating the following Bayesian inference methods: the Laplace approximation, Markov Chain Monte Carlo (MCMC) sampling methods, and variational inference. We have found the Laplace approximation to be the best method for this class of problems. Our work can be easily extended to the broader class of symbolic neural networks to which the polynomial neural network belongs.
Early sensory systems in the brain rapidly adapt to fluctuating input statistics, which requires recurrent communication between neurons. Mechanistically, such recurrent communication is often indirect and mediated by local interneurons. In this work, we explore the computational benefits of mediating recurrent communication via interneurons compared with direct recurrent connections. To this end, we consider two mathematically tractable recurrent linear neural networks that statistically whiten their inputs -- one with direct recurrent connections and the other with interneurons that mediate recurrent communication. By analyzing the corresponding continuous synaptic dynamics and numerically simulating the networks, we show that the network with interneurons is more robust to initialization than the network with direct recurrent connections in the sense that the convergence time for the synaptic dynamics in the network with interneurons (resp. direct recurrent connections) scales logarithmically (resp. linearly) with the spectrum of their initialization. Our results suggest that interneurons are computationally useful for rapid adaptation to changing input statistics. Interestingly, the network with interneurons is an overparameterized solution of the whitening objective for the network with direct recurrent connections, so our results can be viewed as a recurrent linear neural network analogue of the implicit acceleration phenomenon observed in overparameterized feedforward linear neural networks.
Deep neural networks (NNs) are known for their high-prediction performances. However, NNs are prone to yield unreliable predictions when encountering completely new situations without indicating their uncertainty. Bayesian variants of NNs (BNNs), such as Monte Carlo (MC) dropout BNNs, do provide uncertainty measures and simultaneously increase the prediction performance. The only disadvantage of BNNs is their higher computation time during test time because they rely on a sampling approach. Here we present a single-shot MC dropout approximation that preserves the advantages of BNNs while being as fast as NNs. Our approach is based on moment propagation (MP) and allows to analytically approximate the expected value and the variance of the MC dropout signal for commonly used layers in NNs, i.e. convolution, max pooling, dense, softmax, and dropout layers. The MP approach can convert an NN into a BNN without re-training given the NN has been trained with standard dropout. We evaluate our approach on different benchmark datasets and a simulated toy example in a classification and regression setting. We demonstrate that our single-shot MC dropout approximation resembles the point estimate and the uncertainty estimate of the predictive distribution that is achieved with an MC approach, while being fast enough for real-time deployments of BNNs. We show that using part of the saved time to combine our MP approach with deep ensemble techniques does further improve the uncertainty measures.
This paper addresses the benefits of pooling data for shared learning in maintenance operations. We consider a set of systems subject to Poisson degradation that are coupled through an a-priori unknown rate. Decision problems involving these systems are high-dimensional Markov decision processes (MDPs). We present a decomposition result that reduces such an MDP to two-dimensional MDPs, enabling structural analyses and computations. We leverage this decomposition to demonstrate that pooling data can lead to significant cost reductions compared to not pooling.
Data-driven modeling is useful for reconstructing nonlinear dynamical systems when the underlying process is unknown or too expensive to compute. Having reliable uncertainty assessment of the forecast enables tools to be deployed to predict new scenarios unobserved before. In this work, we first extend parallel partial Gaussian processes for predicting the vector-valued transition function that links the observations between the current and next time points, and quantify the uncertainty of predictions by posterior sampling. Second, we show the equivalence between the dynamic mode decomposition and the maximum likelihood estimator of the linear mapping matrix in the linear state space model. The connection provides a data generating model of dynamic mode decomposition and thus, uncertainty of predictions can be obtained. Furthermore, we draw close connections between different data-driven models for approximating nonlinear dynamics, through a unified view of data generating models. We study two numerical examples, where the inputs of the dynamics are assumed to be known in the first example and the inputs are unknown in the second example. The examples indicate that uncertainty of forecast can be properly quantified, whereas model or input misspecification can degrade the accuracy of uncertainty quantification.
Recent advances in 3D fully convolutional networks (FCN) have made it feasible to produce dense voxel-wise predictions of volumetric images. In this work, we show that a multi-class 3D FCN trained on manually labeled CT scans of several anatomical structures (ranging from the large organs to thin vessels) can achieve competitive segmentation results, while avoiding the need for handcrafting features or training class-specific models. To this end, we propose a two-stage, coarse-to-fine approach that will first use a 3D FCN to roughly define a candidate region, which will then be used as input to a second 3D FCN. This reduces the number of voxels the second FCN has to classify to ~10% and allows it to focus on more detailed segmentation of the organs and vessels. We utilize training and validation sets consisting of 331 clinical CT images and test our models on a completely unseen data collection acquired at a different hospital that includes 150 CT scans, targeting three anatomical organs (liver, spleen, and pancreas). In challenging organs such as the pancreas, our cascaded approach improves the mean Dice score from 68.5 to 82.2%, achieving the highest reported average score on this dataset. We compare with a 2D FCN method on a separate dataset of 240 CT scans with 18 classes and achieve a significantly higher performance in small organs and vessels. Furthermore, we explore fine-tuning our models to different datasets. Our experiments illustrate the promise and robustness of current 3D FCN based semantic segmentation of medical images, achieving state-of-the-art results. Our code and trained models are available for download: //github.com/holgerroth/3Dunet_abdomen_cascade.