亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Non-local operations play a crucial role in computer vision enabling the capture of long-range dependencies through weighted sums of features across the input, surpassing the constraints of traditional convolution operations that focus solely on local neighborhoods. Non-local operations typically require computing pairwise relationships between all elements in a set, leading to quadratic complexity in terms of time and memory. Due to the high computational and memory demands, scaling non-local neural networks to large-scale problems can be challenging. This article introduces a hybrid quantum-classical scalable non-local neural network, referred to as Quantum Non-Local Neural Network (QNL-Net), to enhance pattern recognition. The proposed QNL-Net relies on inherent quantum parallelism to allow the simultaneous processing of a large number of input features enabling more efficient computations in quantum-enhanced feature space and involving pairwise relationships through quantum entanglement. We benchmark our proposed QNL-Net with other quantum counterparts to binary classification with datasets MNIST and CIFAR-10. The simulation findings showcase our QNL-Net achieves cutting-edge accuracy levels in binary image classification among quantum classifiers while utilizing fewer qubits.

相關內容

Networking:IFIP International Conferences on Networking。 Explanation:國(guo)際網絡會議。 Publisher:IFIP。 SIT:

Batched sparse (BATS) code is a class of batched network code that can achieve a close-to-optimal rate when an optimal degree distribution is provided. We observed that most probability masses in this optimal distribution are very small, i.e., the distribution "looks" sparse. In this paper, we investigate the sparsity optimization of degree distribution for BATS codes that produces sparse degree distributions. There are many advantages to use a sparse degree distribution, say, it is robust to precision errors when sampling the degree distribution during encoding and decoding in practice. We discuss a few heuristics and also a way to obtain an exact sparsity solution. These approaches give a trade-off between computational time and achievable rate, thus give us the flexibility to adopt BATS codes in various scenarios, e.g., device with limited computational power, stable channel condition, etc.

Message-passing graph neural networks (GNNs) excel at capturing local relationships but struggle with long-range dependencies in graphs. In contrast, graph transformers (GTs) enable global information exchange but often oversimplify the graph structure by representing graphs as sets of fixed-length vectors. This work introduces a novel architecture that overcomes the shortcomings of both approaches by combining the long-range information of random walks with local message passing. By treating random walks as sequences, our architecture leverages recent advances in sequence models to effectively capture long-range dependencies within these walks. Based on this concept, we propose a framework that offers (1) more expressive graph representations through random walk sequences, (2) the ability to utilize any sequence model for capturing long-range dependencies, and (3) the flexibility by integrating various GNN and GT architectures. Our experimental evaluations demonstrate that our approach achieves significant performance improvements on 19 graph and node benchmark datasets, notably outperforming existing methods by up to 13\% on the PascalVoc-SP and COCO-SP datasets. The code is available at //github.com/BorgwardtLab/NeuralWalker.

We show the effectiveness of automatic differentiation in efficiently and correctly computing and controlling the spectrum of implicitly linear operators, a rich family of layer types including all standard convolutional and dense layers. We provide the first clipping method which is correct for general convolution layers, and illuminate the representational limitation that caused correctness issues in prior work. We study the effect of the batch normalization layers when concatenated with convolutional layers and show how our clipping method can be applied to their composition. By comparing the accuracy and performance of our algorithms to the state-of-the-art methods, using various experiments, we show they are more precise and efficient and lead to better generalization and adversarial robustness. We provide the code for using our methods at //github.com/Ali-E/FastClip.

In many wireless application scenarios, acquiring labeled data can be prohibitively costly, requiring complex optimization processes or measurement campaigns. Semi-supervised learning leverages unlabeled samples to augment the available dataset by assigning synthetic labels obtained via machine learning (ML)-based predictions. However, treating the synthetic labels as true labels may yield worse-performing models as compared to models trained using only labeled data. Inspired by the recently developed prediction-powered inference (PPI) framework, this work investigates how to leverage the synthetic labels produced by an ML model, while accounting for the inherent bias concerning true labels. To this end, we first review PPI and its recent extensions, namely tuned PPI and cross-prediction-powered inference (CPPI). Then, we introduce two novel variants of PPI. The first, referred to as tuned CPPI, provides CPPI with an additional degree of freedom in adapting to the quality of the ML-based labels. The second, meta-CPPI (MCPPI), extends tuned CPPI via the joint optimization of the ML labeling models and of the parameters of interest. Finally, we showcase two applications of PPI-based techniques in wireless systems, namely beam alignment based on channel knowledge maps in millimeter-wave systems and received signal strength information-based indoor localization. Simulation results show the advantages of PPI-based techniques over conventional approaches that rely solely on labeled data or that apply standard pseudo-labeling strategies from semi-supervised learning. Furthermore, the proposed tuned CPPI method is observed to guarantee the best performance among all benchmark schemes, especially in the regime of limited labeled data.

Our study addresses the inference of jumps (i.e. sets of discontinuities) within multivariate signals from noisy observations in the non-parametric regression setting. Departing from standard analytical approaches, we propose a new framework, based on geometric control over the set of discontinuities. This allows to consider larger classes of signals, of any dimension, with potentially wild discontinuities (exhibiting, for example, self-intersections and corners). We study a simple estimation procedure relying on histogram differences and show its consistency and near-optimality for the Hausdorff distance over these new classes. Furthermore, exploiting the assumptions on the geometry of jumps, we design procedures to infer consistently the homology groups of the jumps locations and the persistence diagrams from the induced offset filtration.

Image-level weakly supervised semantic segmentation (WSSS) is a fundamental yet challenging computer vision task facilitating scene understanding and automatic driving. Most existing methods resort to classification-based Class Activation Maps (CAMs) to play as the initial pseudo labels, which tend to focus on the discriminative image regions and lack customized characteristics for the segmentation task. To alleviate this issue, we propose a novel activation modulation and recalibration (AMR) scheme, which leverages a spotlight branch and a compensation branch to obtain weighted CAMs that can provide recalibration supervision and task-specific concepts. Specifically, an attention modulation module (AMM) is employed to rearrange the distribution of feature importance from the channel-spatial sequential perspective, which helps to explicitly model channel-wise interdependencies and spatial encodings to adaptively modulate segmentation-oriented activation responses. Furthermore, we introduce a cross pseudo supervision for dual branches, which can be regarded as a semantic similar regularization to mutually refine two branches. Extensive experiments show that AMR establishes a new state-of-the-art performance on the PASCAL VOC 2012 dataset, surpassing not only current methods trained with the image-level of supervision but also some methods relying on stronger supervision, such as saliency label. Experiments also reveal that our scheme is plug-and-play and can be incorporated with other approaches to boost their performance.

Humans perceive the world by concurrently processing and fusing high-dimensional inputs from multiple modalities such as vision and audio. Machine perception models, in stark contrast, are typically modality-specific and optimised for unimodal benchmarks, and hence late-stage fusion of final representations or predictions from each modality (`late-fusion') is still a dominant paradigm for multimodal video classification. Instead, we introduce a novel transformer based architecture that uses `fusion bottlenecks' for modality fusion at multiple layers. Compared to traditional pairwise self-attention, our model forces information between different modalities to pass through a small number of bottleneck latents, requiring the model to collate and condense the most relevant information in each modality and only share what is necessary. We find that such a strategy improves fusion performance, at the same time reducing computational cost. We conduct thorough ablation studies, and achieve state-of-the-art results on multiple audio-visual classification benchmarks including Audioset, Epic-Kitchens and VGGSound. All code and models will be released.

Federated Learning (FL) is a decentralized machine-learning paradigm, in which a global server iteratively averages the model parameters of local users without accessing their data. User heterogeneity has imposed significant challenges to FL, which can incur drifted global models that are slow to converge. Knowledge Distillation has recently emerged to tackle this issue, by refining the server model using aggregated knowledge from heterogeneous users, other than directly averaging their model parameters. This approach, however, depends on a proxy dataset, making it impractical unless such a prerequisite is satisfied. Moreover, the ensemble knowledge is not fully utilized to guide local model learning, which may in turn affect the quality of the aggregated model. Inspired by the prior art, we propose a data-free knowledge distillation} approach to address heterogeneous FL, where the server learns a lightweight generator to ensemble user information in a data-free manner, which is then broadcasted to users, regulating local training using the learned knowledge as an inductive bias. Empirical studies powered by theoretical implications show that, our approach facilitates FL with better generalization performance using fewer communication rounds, compared with the state-of-the-art.

Domain shift is a fundamental problem in visual recognition which typically arises when the source and target data follow different distributions. The existing domain adaptation approaches which tackle this problem work in the closed-set setting with the assumption that the source and the target data share exactly the same classes of objects. In this paper, we tackle a more realistic problem of open-set domain shift where the target data contains additional classes that are not present in the source data. More specifically, we introduce an end-to-end Progressive Graph Learning (PGL) framework where a graph neural network with episodic training is integrated to suppress underlying conditional shift and adversarial learning is adopted to close the gap between the source and target distributions. Compared to the existing open-set adaptation approaches, our approach guarantees to achieve a tighter upper bound of the target error. Extensive experiments on three standard open-set benchmarks evidence that our approach significantly outperforms the state-of-the-arts in open-set domain adaptation.

High spectral dimensionality and the shortage of annotations make hyperspectral image (HSI) classification a challenging problem. Recent studies suggest that convolutional neural networks can learn discriminative spatial features, which play a paramount role in HSI interpretation. However, most of these methods ignore the distinctive spectral-spatial characteristic of hyperspectral data. In addition, a large amount of unlabeled data remains an unexploited gold mine for efficient data use. Therefore, we proposed an integration of generative adversarial networks (GANs) and probabilistic graphical models for HSI classification. Specifically, we used a spectral-spatial generator and a discriminator to identify land cover categories of hyperspectral cubes. Moreover, to take advantage of a large amount of unlabeled data, we adopted a conditional random field to refine the preliminary classification results generated by GANs. Experimental results obtained using two commonly studied datasets demonstrate that the proposed framework achieved encouraging classification accuracy using a small number of data for training.

北京阿比特科技有限公司