We study the Inexact Langevin Dynamics (ILD), Inexact Langevin Algorithm (ILA), and Score-based Generative Modeling (SGM) when utilizing estimated score functions for sampling. Our focus lies in establishing stable biased convergence guarantees in terms of the Kullback-Leibler (KL) divergence. To achieve these guarantees, we impose two key assumptions: 1) the target distribution satisfies the log-Sobolev inequality (LSI), and 2) the score estimator exhibits a bounded Moment Generating Function (MGF) error. Notably, the MGF error assumption we adopt is more lenient compared to the $L^\infty$ error assumption used in existing literature. However, it is stronger than the $L^2$ error assumption utilized in recent works, which often leads to unstable bounds. We explore the question of how to obtain a provably accurate score estimator that satisfies the MGF error assumption. Specifically, we demonstrate that a simple estimator based on kernel density estimation fulfills the MGF error assumption for sub-Gaussian target distribution, at the population level.
In this study, we investigate whether the representations learned by neural networks possess a privileged and convergent basis. Specifically, we examine the significance of feature directions represented by individual neurons. First, we establish that arbitrary rotations of neural representations cannot be inverted (unlike linear networks), indicating that they do not exhibit complete rotational invariance. Subsequently, we explore the possibility of multiple bases achieving identical performance. To do this, we compare the bases of networks trained with the same parameters but with varying random initializations. Our study reveals two findings: (1) Even in wide networks such as WideResNets, neural networks do not converge to a unique basis; (2) Basis correlation increases significantly when a few early layers of the network are frozen identically. Furthermore, we analyze Linear Mode Connectivity, which has been studied as a measure of basis correlation. Our findings give evidence that while Linear Mode Connectivity improves with increased network width, this improvement is not due to an increase in basis correlation.
A posteriori error estimates based on residuals can be used for reliable error control of numerical methods. Here, we consider them in the context of ordinary differential equations and Runge-Kutta methods. In particular, we take the approach of Dedner & Giesselmann (2016) and investigate it when used to select the time step size. We focus on step size control stability when combined with explicit Runge-Kutta methods and demonstrate that a standard I controller is unstable while more advanced PI and PID controllers can be designed to be stable. We compare the stability properties of residual-based estimators and classical error estimators based on an embedded Runge-Kutta method both analytically and in numerical experiments.
Optimal Transport has sparked vivid interest in recent years, in particular thanks to the Wasserstein distance, which provides a geometrically sensible and intuitive way of comparing probability measures. For computational reasons, the Sliced Wasserstein (SW) distance was introduced as an alternative to the Wasserstein distance, and has seen uses for training generative Neural Networks (NNs). While convergence of Stochastic Gradient Descent (SGD) has been observed practically in such a setting, there is to our knowledge no theoretical guarantee for this observation. Leveraging recent works on convergence of SGD on non-smooth and non-convex functions by Bianchi et al. (2022), we aim to bridge that knowledge gap, and provide a realistic context under which fixed-step SGD trajectories for the SW loss on NN parameters converge. More precisely, we show that the trajectories approach the set of (sub)-gradient flow equations as the step decreases. Under stricter assumptions, we show a much stronger convergence result for noised and projected SGD schemes, namely that the long-run limits of the trajectories approach a set of generalised critical points of the loss function.
Medical image segmentation is a crucial task that relies on the ability to accurately identify and isolate regions of interest in medical images. Thereby, generative approaches allow to capture the statistical properties of segmentation masks that are dependent on the respective structures. In this work we propose a conditional score-based generative modeling framework to represent the signed distance function (SDF) leading to an implicit distribution of segmentation masks. The advantage of leveraging the SDF is a more natural distortion when compared to that of binary masks. By learning the score function of the conditional distribution of SDFs we can accurately sample from the distribution of segmentation masks, allowing for the evaluation of statistical quantities. Thus, this probabilistic representation allows for the generation of uncertainty maps represented by the variance, which can aid in further analysis and enhance the predictive robustness. We qualitatively and quantitatively illustrate competitive performance of the proposed method on a public nuclei and gland segmentation data set, highlighting its potential utility in medical image segmentation applications.
We study partially linear models in settings where observations are arranged in independent groups but may exhibit within-group dependence. Existing approaches estimate linear model parameters through weighted least squares, with optimal weights (given by the inverse covariance of the response, conditional on the covariates) typically estimated by maximising a (restricted) likelihood from random effects modelling or by using generalised estimating equations. We introduce a new 'sandwich loss' whose population minimiser coincides with the weights of these approaches when the parametric forms for the conditional covariance are well-specified, but can yield arbitrarily large improvements in linear parameter estimation accuracy when they are not. Under relatively mild conditions, our estimated coefficients are asymptotically Gaussian and enjoy minimal variance among estimators with weights restricted to a given class of functions, when user-chosen regression methods are used to estimate nuisance functions. We further expand the class of functional forms for the weights that may be fitted beyond parametric models by leveraging the flexibility of modern machine learning methods within a new gradient boosting scheme for minimising the sandwich loss. We demonstrate the effectiveness of both the sandwich loss and what we call 'sandwich boosting' in a variety of settings with simulated and real-world data.
Machine learning (ML) and deep learning models are extensively used for parameter optimization and regression problems. However, not all inverse problems in ML are ``identifiable,'' indicating that model parameters may not be uniquely determined from the available data and the data model's input-output relationship. In this study, we investigate the notion of model parameter identifiability through a case study focused on parameter estimation from motion sensor data. Utilizing a bipedal-spring mass human walk dynamics model, we generate synthetic data representing diverse gait patterns and conditions. Employing a deep neural network, we attempt to estimate subject-wise parameters, including mass, stiffness, and equilibrium leg length. The results show that while certain parameters can be identified from the observation data, others remain unidentifiable, highlighting that unidentifiability is an intrinsic limitation of the experimental setup, necessitating a change in data collection and experimental scenarios. Beyond this specific case study, the concept of identifiability has broader implications in ML and deep learning. Addressing unidentifiability requires proven identifiable models (with theoretical support), multimodal data fusion techniques, and advancements in model-based machine learning. Understanding and resolving unidentifiability challenges will lead to more reliable and accurate applications across diverse domains, transcending mere model convergence and enhancing the reliability of machine learning models.
In inverse problems, one attempts to infer spatially variable functions from indirect measurements of a system. To practitioners of inverse problems, the concept of "information" is familiar when discussing key questions such as which parts of the function can be inferred accurately and which cannot. For example, it is generally understood that we can identify system parameters accurately only close to detectors, or along ray paths between sources and detectors, because we have "the most information" for these places. Although referenced in many publications, the "information" that is invoked in such contexts is not a well understood and clearly defined quantity. Herein, we present a definition of information density that is based on the variance of coefficients as derived from a Bayesian reformulation of the inverse problem. We then discuss three areas in which this information density can be useful in practical algorithms for the solution of inverse problems, and illustrate the usefulness in one of these areas -- how to choose the discretization mesh for the function to be reconstructed -- using numerical experiments.
Density power divergence (DPD) [Basu et al. (1998), Biometrika], which is designed to estimate the underlying distribution of the observations robustly against outliers, comprises an integral term of the power of the parametric density models to be estimated. While the explicit form of the integral term can be obtained for some specific densities (such as normal density and exponential density), its computational intractability has prohibited the application of DPD-based estimation to more general parametric densities, over a quarter of a century since the proposal of DPD. This study proposes a simple stochastic optimization approach to minimize DPD for general parametric density models and explains its adequacy by referring to conventional theories on stochastic optimization. The proposed approach also can be applied to the minimization of another density power-based $\gamma$-divergence with the aid of unnormalized models.
The generalization mystery in deep learning is the following: Why do over-parameterized neural networks trained with gradient descent (GD) generalize well on real datasets even though they are capable of fitting random datasets of comparable size? Furthermore, from among all solutions that fit the training data, how does GD find one that generalizes well (when such a well-generalizing solution exists)? We argue that the answer to both questions lies in the interaction of the gradients of different examples during training. Intuitively, if the per-example gradients are well-aligned, that is, if they are coherent, then one may expect GD to be (algorithmically) stable, and hence generalize well. We formalize this argument with an easy to compute and interpretable metric for coherence, and show that the metric takes on very different values on real and random datasets for several common vision networks. The theory also explains a number of other phenomena in deep learning, such as why some examples are reliably learned earlier than others, why early stopping works, and why it is possible to learn from noisy labels. Moreover, since the theory provides a causal explanation of how GD finds a well-generalizing solution when one exists, it motivates a class of simple modifications to GD that attenuate memorization and improve generalization. Generalization in deep learning is an extremely broad phenomenon, and therefore, it requires an equally general explanation. We conclude with a survey of alternative lines of attack on this problem, and argue that the proposed approach is the most viable one on this basis.
We introduce an effective model to overcome the problem of mode collapse when training Generative Adversarial Networks (GAN). Firstly, we propose a new generator objective that finds it better to tackle mode collapse. And, we apply an independent Autoencoders (AE) to constrain the generator and consider its reconstructed samples as "real" samples to slow down the convergence of discriminator that enables to reduce the gradient vanishing problem and stabilize the model. Secondly, from mappings between latent and data spaces provided by AE, we further regularize AE by the relative distance between the latent and data samples to explicitly prevent the generator falling into mode collapse setting. This idea comes when we find a new way to visualize the mode collapse on MNIST dataset. To the best of our knowledge, our method is the first to propose and apply successfully the relative distance of latent and data samples for stabilizing GAN. Thirdly, our proposed model, namely Generative Adversarial Autoencoder Networks (GAAN), is stable and has suffered from neither gradient vanishing nor mode collapse issues, as empirically demonstrated on synthetic, MNIST, MNIST-1K, CelebA and CIFAR-10 datasets. Experimental results show that our method can approximate well multi-modal distribution and achieve better results than state-of-the-art methods on these benchmark datasets. Our model implementation is published here: //github.com/tntrung/gaan