Container technology, as the key enabler behind microservice architectures, is widely applied in Cloud and Edge Computing. A long and continuous running of operating system (OS) host-ing container-based services can encounter software aging that leads to performance deterioration and even causes system fail-ures. OS rejuvenation techniques can mitigate the impact of software aging but the rejuvenation trigger interval needs to be carefully determined to reduce the downtime cost due to rejuve-nation. This paper proposes a comprehensive semi-Markov-based approach to quantitatively evaluate the effect of OS reju-venation on the dependability and the performance of a con-tainer-based service. In contrast to the existing studies, we nei-ther restrict the distributions of time intervals of events to be exponential nor assume that backup resources are always avail-able. Through the numerical study, we show the optimal con-tainer-migration trigger intervals that can maximize the de-pendability or minimize the performance of a container-based service.
Nowadays, realistic simulation environments are essential to validate and build reliable robotic solutions. This is particularly true when using Reinforcement Learning (RL) based control policies. To this end, both robotics and RL developers need tools and workflows to create physically accurate simulations and synthetic datasets. Gazebo, MuJoCo, Webots, Pybullets or Isaac Sym are some of the many tools available to simulate robotic systems. Developing learning-based methods for space navigation is, due to the highly complex nature of the problem, an intensive data-driven process that requires highly parallelized simulations. When it comes to the control of spacecrafts, there is no easy to use simulation library designed for RL. We address this gap by harnessing the capabilities of NVIDIA Isaac Gym, where both physics simulation and the policy training reside on GPU. Building on this tool, we provide an open-source library enabling users to simulate thousands of parallel spacecrafts, that learn a set of maneuvering tasks, such as position, attitude, and velocity control. These tasks enable to validate complex space scenarios, such as trajectory optimization for landing, docking, rendezvous and more.
Large Language Models (LLMs) have garnered considerable attention in recommender systems. To achieve LLM-based recommendation, item indexing and generation grounding are two essential steps, bridging between recommendation items and natural language. Item indexing assigns a unique identifier to represent each item in natural language, and generation grounding grounds the generated token sequences to in-corpus items. However, previous works suffer from inherent limitations in the two steps. For item indexing, existing ID-based identifiers (e.g., numeric IDs) and description-based identifiers (e.g., titles) often compromise semantic richness or uniqueness. Moreover, generation grounding might inadvertently produce out-of-corpus identifiers. Worse still, autoregressive generation heavily relies on the initial token's quality. To combat these issues, we propose a novel multi-facet paradigm, namely TransRec, to bridge the LLMs to recommendation. Specifically, TransRec employs multi-facet identifiers that incorporate ID, title, and attribute, achieving both distinctiveness and semantics. Additionally, we introduce a specialized data structure for TransRec to guarantee the in-corpus identifier generation and adopt substring indexing to encourage LLMs to generate from any position. We implement TransRec on two backbone LLMs, i.e., BART-large and LLaMA-7B. Empirical results on three real-world datasets under diverse settings (e.g., full training and few-shot training with warm- and cold-start testings) attest to the superiority of TransRec.
Manifolds discovered by machine learning models provide a compact representation of the underlying data. Geodesics on these manifolds define locally length-minimising curves and provide a notion of distance, which are key for reduced-order modelling, statistical inference, and interpolation. In this work, we propose a model-based parameterisation for distance fields and geodesic flows on manifolds, exploiting solutions of a manifold-augmented Eikonal equation. We demonstrate how the geometry of the manifold impacts the distance field, and exploit the geodesic flow to obtain globally length-minimising curves directly. This work opens opportunities for statistics and reduced-order modelling on differentiable manifolds.
Designers need to consider not only perceptual effectiveness but also visual styles when creating an infographic. This process can be difficult and time consuming for professional designers, not to mention non-expert users, leading to the demand for automated infographics design. As a first step, we focus on timeline infographics, which have been widely used for centuries. We contribute an end-to-end approach that automatically extracts an extensible timeline template from a bitmap image. Our approach adopts a deconstruction and reconstruction paradigm. At the deconstruction stage, we propose a multi-task deep neural network that simultaneously parses two kinds of information from a bitmap timeline: 1) the global information, i.e., the representation, scale, layout, and orientation of the timeline, and 2) the local information, i.e., the location, category, and pixels of each visual element on the timeline. At the reconstruction stage, we propose a pipeline with three techniques, i.e., Non-Maximum Merging, Redundancy Recover, and DL GrabCut, to extract an extensible template from the infographic, by utilizing the deconstruction results. To evaluate the effectiveness of our approach, we synthesize a timeline dataset (4296 images) and collect a real-world timeline dataset (393 images) from the Internet. We first report quantitative evaluation results of our approach over the two datasets. Then, we present examples of automatically extracted templates and timelines automatically generated based on these templates to qualitatively demonstrate the performance. The results confirm that our approach can effectively extract extensible templates from real-world timeline infographics.
To navigate reliably in indoor environments, an industrial autonomous vehicle must know its position. However, current indoor vehicle positioning technologies either lack accuracy, usability or are too expensive. Thus, we propose a novel concept called local reference point assisted active radar positioning, which is able to overcome these drawbacks. It is based on distributing passive retroreflectors in the indoor environment such that each position of the vehicle can be identified by a unique reflection characteristic regarding the reflectors. To observe these characteristics, the autonomous vehicle is equipped with an active radar system. On one hand, this paper presents the basic idea and concept of our new approach towards indoor vehicle positioning and especially focuses on the crucial placement of the reflectors. On the other hand, it also provides a proof of concept by conducting a full system simulation including the placement of the local reference points, the radar-based distance estimation and the comparison of two different positioning methods. It successfully demonstrates the feasibility of our proposed approach.
Accurate and controllable image editing is a challenging task that has attracted significant attention recently. Notably, DragGAN is an interactive point-based image editing framework that achieves impressive editing results with pixel-level precision. However, due to its reliance on generative adversarial networks (GANs), its generality is limited by the capacity of pretrained GAN models. In this work, we extend this editing framework to diffusion models and propose a novel approach DragDiffusion. By harnessing large-scale pretrained diffusion models, we greatly enhance the applicability of interactive point-based editing on both real and diffusion-generated images. Our approach involves optimizing the diffusion latents to achieve precise spatial control. The supervision signal of this optimization process is from the diffusion model's UNet features, which are known to contain rich semantic and geometric information. Moreover, we introduce two additional techniques, namely LoRA fine-tuning and latent-MasaCtrl, to further preserve the identity of the original image. Lastly, we present a challenging benchmark dataset called DragBench -- the first benchmark to evaluate the performance of interactive point-based image editing methods. Experiments across a wide range of challenging cases (e.g., images with multiple objects, diverse object categories, various styles, etc.) demonstrate the versatility and generality of DragDiffusion. Code: //github.com/Yujun-Shi/DragDiffusion.
Link prediction on knowledge graphs (KGs) is a key research topic. Previous work mainly focused on binary relations, paying less attention to higher-arity relations although they are ubiquitous in real-world KGs. This paper considers link prediction upon n-ary relational facts and proposes a graph-based approach to this task. The key to our approach is to represent the n-ary structure of a fact as a small heterogeneous graph, and model this graph with edge-biased fully-connected attention. The fully-connected attention captures universal inter-vertex interactions, while with edge-aware attentive biases to particularly encode the graph structure and its heterogeneity. In this fashion, our approach fully models global and local dependencies in each n-ary fact, and hence can more effectively capture associations therein. Extensive evaluation verifies the effectiveness and superiority of our approach. It performs substantially and consistently better than current state-of-the-art across a variety of n-ary relational benchmarks. Our code is publicly available.
Dialogue systems are a popular Natural Language Processing (NLP) task as it is promising in real-life applications. It is also a complicated task since many NLP tasks deserving study are involved. As a result, a multitude of novel works on this task are carried out, and most of them are deep learning-based due to the outstanding performance. In this survey, we mainly focus on the deep learning-based dialogue systems. We comprehensively review state-of-the-art research outcomes in dialogue systems and analyze them from two angles: model type and system type. Specifically, from the angle of model type, we discuss the principles, characteristics, and applications of different models that are widely used in dialogue systems. This will help researchers acquaint these models and see how they are applied in state-of-the-art frameworks, which is rather helpful when designing a new dialogue system. From the angle of system type, we discuss task-oriented and open-domain dialogue systems as two streams of research, providing insight into the hot topics related. Furthermore, we comprehensively review the evaluation methods and datasets for dialogue systems to pave the way for future research. Finally, some possible research trends are identified based on the recent research outcomes. To the best of our knowledge, this survey is the most comprehensive and up-to-date one at present in the area of dialogue systems and dialogue-related tasks, extensively covering the popular frameworks, topics, and datasets.
Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.
In Multi-Label Text Classification (MLTC), one sample can belong to more than one class. It is observed that most MLTC tasks, there are dependencies or correlations among labels. Existing methods tend to ignore the relationship among labels. In this paper, a graph attention network-based model is proposed to capture the attentive dependency structure among the labels. The graph attention network uses a feature matrix and a correlation matrix to capture and explore the crucial dependencies between the labels and generate classifiers for the task. The generated classifiers are applied to sentence feature vectors obtained from the text feature extraction network (BiLSTM) to enable end-to-end training. Attention allows the system to assign different weights to neighbor nodes per label, thus allowing it to learn the dependencies among labels implicitly. The results of the proposed model are validated on five real-world MLTC datasets. The proposed model achieves similar or better performance compared to the previous state-of-the-art models.