For the intersection of the Stiefel manifold and the set of nonnegative matrices in $\mathbb{R}^{n\times r}$, we present global and local error bounds with easily computable residual functions and explicit coefficients. Moreover, we show that the error bounds cannot be improved except for the coefficients, which explains why two square-root terms are necessary in the bounds when $1 < r < n$ for the nonnegativity and orthogonality, respectively. The error bounds are applied to penalty methods for minimizing a Lipschitz continuous function with nonnegative orthogonality constraints. Under only the Lipschitz continuity of the objective function, we prove the exactness of penalty problems that penalize the nonnegativity constraint, or the orthogonality constraint, or both constraints. Our results cover both global and local minimizers.
In this work, we demonstrate that the Bochner integral representation of the Algebraic Riccati Equations (ARE) are well-posed without any compactness assumptions on the coefficient and semigroup operators. From this result, we then are able to determine that, under some assumptions, the solution to the Galerkin approximations to these equations are convergent to the infinite dimensional solution. Going further, we apply this general result to demonstrate that the finite element approximation to the ARE are optimal for weakly damped wave semigroup processes in the $H^1(\Omega) \times L^2(\Omega)$ norm. Optimal convergence rates of the functional gain for a weakly damped wave optimal control system in both the $H^1(\Omega) \times L^2(\Omega)$ and $L^2(\Omega)\times L^2(\Omega)$ norms are demonstrated in the numerical examples.
Inverse problems constrained by partial differential equations (PDEs) play a critical role in model development and calibration. In many applications, there are multiple uncertain parameters in a model which must be estimated. Although the Bayesian formulation is attractive for such problems, computational cost and high dimensionality frequently prohibit a thorough exploration of the parametric uncertainty. A common approach is to reduce the dimension by fixing some parameters (which we will call auxiliary parameters) to a best estimate and use techniques from PDE-constrained optimization to approximate properties of the Bayesian posterior distribution. For instance, the maximum a posteriori probability (MAP) and the Laplace approximation of the posterior covariance can be computed. In this article, we propose using hyper-differential sensitivity analysis (HDSA) to assess the sensitivity of the MAP point to changes in the auxiliary parameters. We establish an interpretation of HDSA as correlations in the posterior distribution. Our proposed framework is demonstrated on the inversion of bedrock topography for the Greenland ice sheet with uncertainties arising from the basal friction coefficient and climate forcing (ice accumulation rate)
In this work we start the investigation of tight complexity bounds for connectivity problems parameterized by cutwidth assuming the Strong Exponential-Time Hypothesis (SETH). Van Geffen et al. posed this question for odd cycle transversal and feedback vertex set. We answer it for these two and four further problems, namely connected vertex cover, connected domintaing set, steiner tree, and connected odd cycle transversal. For the latter two problems it sufficed to prove lower bounds that match the running time inherited from parameterization by treewidth; for the others we provide faster algorithms than relative to treewidth and prove matching lower bounds. For upper bounds we first extend the idea of Groenland et al.~[STACS~2022] to solve what we call coloring-like problem. Such problems are defined by a symmetric matrix $M$ over $\mathbb{F}_2$ indexed by a set of colors. The goal is to count the number (modulo some prime $p$) of colorings of a graph such that $M$ has a $1$-entry if indexed by the colors of the end-points of any edge. We show that this problem can be solved faster if $M$ has small rank over $\mathbb{F}_p$. We apply this result to get our upper bounds for connected vertex cover and connected dominating set. The upper bounds for odd cycle transversal and feedback vertex set use a subdivision trick to get below the bounds that matrix rank would yield.
This work introduces a reduced order modeling (ROM) framework for the solution of parameterized second-order linear elliptic partial differential equations formulated on unfitted geometries. The goal is to construct efficient projection-based ROMs, which rely on techniques such as the reduced basis method and discrete empirical interpolation. The presence of geometrical parameters in unfitted domain discretizations entails challenges for the application of standard ROMs. Therefore, in this work we propose a methodology based on i) extension of snapshots on the background mesh and ii) localization strategies to decrease the number of reduced basis functions. The method we obtain is computationally efficient and accurate, while it is agnostic with respect to the underlying discretization choice. We test the applicability of the proposed framework with numerical experiments on two model problems, namely the Poisson and linear elasticity problems. In particular, we study several benchmarks formulated on two-dimensional, trimmed domains discretized with splines and we observe a significant reduction of the online computational cost compared to standard ROMs for the same level of accuracy. Moreover, we show the applicability of our methodology to a three-dimensional geometry of a linear elastic problem.
The transmission eigenvalue problem arising from the inverse scattering theory is of great importance in the theory of qualitative methods and in the practical applications. In this paper, we study the transmission eigenvalue problem for anisotropic inhomogeneous media in $\Omega\subset \mathbb{R}^d$,(d=2,3). Using the T-coercivity and the spectral approximation theory, we derive an a posteriori estimator of residual type and prove its effectiveness and reliability for eigenfunctions. In addition, we also prove the reliability of the estimator for transmission eigenvalues. The numerical experiments indicate our method is efficient and can reach the optimal order $DoF^{-2m/d}$ by using piecewise polynomials of degree $m$ for real eigenvalues.
It remains an open problem to find the optimal configuration of phase shifts under the discrete constraint for intelligent reflecting surface (IRS) in polynomial time. The above problem is widely believed to be difficult because it is not linked to any known combinatorial problems that can be solved efficiently. The branch-and-bound algorithms and the approximation algorithms constitute the best results in this area. Nevertheless, this work shows that the global optimum can actually be reached in linear time on average in terms of the number of reflective elements (REs) of IRS. The main idea is to geometrically interpret the discrete beamforming problem as choosing the optimal point on the unit circle. Although the number of possible combinations of phase shifts grows exponentially with the number of REs, it turns out that there are only a linear number of circular arcs that possibly contain the optimal point. Furthermore, the proposed algorithm can be viewed as a novel approach to a special case of the discrete quadratic program (QP).
We present a new algorithm for automatically bounding the Taylor remainder series. In the special case of a scalar function $f: \mathbb{R} \mapsto \mathbb{R}$, our algorithm takes as input a reference point $x_0$, trust region $[a, b]$, and integer $k \ge 0$, and returns an interval $I$ such that $f(x) - \sum_{i=0}^k \frac {f^{(i)}(x_0)} {i!} (x - x_0)^i \in I (x - x_0)^{k+1}$ for all $x \in [a, b]$. As in automatic differentiation, the function $f$ is provided to the algorithm in symbolic form, and must be composed of known elementary functions. At a high level, our algorithm has two steps. First, for a variety of commonly-used elementary functions (e.g., $\exp$, $\log$), we derive sharp polynomial upper and lower bounds on the Taylor remainder series. We then recursively combine the bounds for the elementary functions using an interval arithmetic variant of Taylor-mode automatic differentiation. Our algorithm can make efficient use of machine learning hardware accelerators, and we provide an open source implementation in JAX. We then turn our attention to applications. Most notably, we use our new machinery to create the first universal majorization-minimization optimization algorithms: algorithms that iteratively minimize an arbitrary loss using a majorizer that is derived automatically, rather than by hand. Applied to machine learning, this leads to architecture-specific optimizers for training deep networks that converge from any starting point, without hyperparameter tuning. Our experiments show that for some optimization problems, these hyperparameter-free optimizers outperform tuned versions of gradient descent, Adam, and AdaGrad. We also show that our automatically-derived bounds can be used for verified global optimization and numerical integration, and to prove sharper versions of Jensen's inequality.
Entanglement is one of the physical properties of quantum systems responsible for the computational hardness of simulating quantum systems. But while the runtime of specific algorithms, notably tensor network algorithms, explicitly depends on the amount of entanglement in the system, it is unknown whether this connection runs deeper and entanglement can also cause inherent, algorithm-independent complexity. In this work, we quantitatively connect the entanglement present in certain quantum systems to the computational complexity of simulating those systems. Moreover, we completely characterize the entanglement and complexity as a function of a system parameter. Specifically, we consider the task of simulating single-qubit measurements of $k$--regular graph states on $n$ qubits. We show that, as the regularity parameter is increased from $1$ to $n-1$, there is a sharp transition from an easy regime with low entanglement to a hard regime with high entanglement at $k=3$, and a transition back to easy and low entanglement at $k=n-3$. As a key technical result, we prove a duality for the simulation complexity of regular graph states between low and high regularity.
In this paper, we study the problem of shape-programming of incompressible hyperelastic shells through differential growth. The aim of the current work is to determine the growth tensor (or growth functions) that can produce the deformation of a shell to the desired shape. First, a consistent finite-strain shell theory is introduced. The shell equation system is established from the 3D governing system through a series expansion and truncation approach. Based on the shell theory, the problem of shape-programming is studied under the stress-free assumption. For a special case in which the parametric coordinate curves generate a net of curvature lines on the target surface, the sufficient condition to ensure the vanishing of the stress components is analyzed, from which the explicit expression of the growth tensor can be derived. In the general case, we conduct the variable changes and derive the total growth tensor by considering a two-step deformation of the shell. With these obtained results, a general theoretical scheme for shape-programming of thin hyperelastic shells through differential growth is proposed. To demonstrate the feasibility and efficiency of the proposed scheme, several nature-inspired examples are studied. The derived growth tensors in these examples have also been implemented in the numerical simulations to verify their correctness and accuracy. The simulation results show that the target shapes of the shell samples can be recovered completely. The scheme for shape-programming proposed in the current work is helpful in designing and manufacturing intelligent soft devices.
This paper focuses on the expected difference in borrower's repayment when there is a change in the lender's credit decisions. Classical estimators overlook the confounding effects and hence the estimation error can be magnificent. As such, we propose another approach to construct the estimators such that the error can be greatly reduced. The proposed estimators are shown to be unbiased, consistent, and robust through a combination of theoretical analysis and numerical testing. Moreover, we compare the power of estimating the causal quantities between the classical estimators and the proposed estimators. The comparison is tested across a wide range of models, including linear regression models, tree-based models, and neural network-based models, under different simulated datasets that exhibit different levels of causality, different degrees of nonlinearity, and different distributional properties. Most importantly, we apply our approaches to a large observational dataset provided by a global technology firm that operates in both the e-commerce and the lending business. We find that the relative reduction of estimation error is strikingly substantial if the causal effects are accounted for correctly.