Entanglement is one of the physical properties of quantum systems responsible for the computational hardness of simulating quantum systems. But while the runtime of specific algorithms, notably tensor network algorithms, explicitly depends on the amount of entanglement in the system, it is unknown whether this connection runs deeper and entanglement can also cause inherent, algorithm-independent complexity. In this work, we quantitatively connect the entanglement present in certain quantum systems to the computational complexity of simulating those systems. Moreover, we completely characterize the entanglement and complexity as a function of a system parameter. Specifically, we consider the task of simulating single-qubit measurements of $k$--regular graph states on $n$ qubits. We show that, as the regularity parameter is increased from $1$ to $n-1$, there is a sharp transition from an easy regime with low entanglement to a hard regime with high entanglement at $k=3$, and a transition back to easy and low entanglement at $k=n-3$. As a key technical result, we prove a duality for the simulation complexity of regular graph states between low and high regularity.
For a nonlinear dynamical system depending on parameters the paper introduces a novel tensorial reduced order model (TROM). The reduced model is projection-based and for systems with no parameters involved it resembles the proper orthogonal decomposition (POD) combined with the discrete empirical interpolation method (DEIM). For parametric systems, the TROM employs low-rank tensor approximations in place of truncated SVD, a key dimension-reduction technique in POD with DEIM. Three popular low-rank tensor compression formats are considered for this purpose: canonical polyadic, Tucker, and tensor train. The use of multi-linear algebra tools allows to incorporate the information about the parameter dependence of the system into the reduced model and leads to a POD--DEIM type ROM which (i) is parameter-specific (localized) and predicts the system dynamics for out-of-training set (unseen) parameter values, (ii) mitigates the adverse effects of high parameter space dimension, (iii) has online computational costs that depend only on tensor compression ranks but not on the full order model size, and (iv) achieves lower reduced space dimensions compared to the conventional POD--DEIM ROM. The paper explains the method, analyzes its prediction power, and assesses its performance for two specific parameter-dependent non-linear dynamical systems.
A fundamental computational problem is to find a shortest non-zero vector in Euclidean lattices, a problem known as the Shortest Vector Problem (SVP). This problem is believed to be hard even on quantum computers and thus plays a pivotal role in post-quantum cryptography. In this work we explore how (efficiently) Noisy Intermediate Scale Quantum (NISQ) devices may be used to solve SVP. Specifically, we map the problem to that of finding the ground state of a suitable Hamiltonian. In particular, (i) we establish new bounds for lattice enumeration, this allows us to obtain new bounds (resp.~estimates) for the number of qubits required per dimension for any lattices (resp.~random q-ary lattices) to solve SVP; (ii) we exclude the zero vector from the optimization space by proposing (a) a different classical optimisation loop or alternatively (b) a new mapping to the Hamiltonian. These improvements allow us to solve SVP in dimension up to 28 in a quantum emulation, significantly more than what was previously achieved, even for special cases. Finally, we extrapolate the size of NISQ devices that is required to be able to solve instances of lattices that are hard even for the best classical algorithms and find that with approximately $10^3$ noisy qubits such instances can be tackled.
We consider the numerical solution of the discrete multi-marginal optimal transport (MOT) by means of the Sinkhorn algorithm. In general, the Sinkhorn algorithm suffers from the curse of dimensionality with respect to the number of marginals. If the MOT cost function decouples according to a tree or circle, its complexity is linear in the number of marginal measures. In this case, we speed up the convolution with the radial kernel required in the Sinkhorn algorithm by non-uniform fast Fourier methods. Each step of the proposed accelerated Sinkhorn algorithm with a tree-structured cost function has a complexity of $\mathcal O(K N)$ instead of the classical $\mathcal O(K N^2)$ for straightforward matrix-vector operations, where $K$ is the number of marginals and each marginal measure is supported on at most $N$ points. In case of a circle-structured cost function, the complexity improves from $\mathcal O(K N^3)$ to $\mathcal O(K N^2)$. This is confirmed by numerical experiments.
The l1-regularization is very popular in high dimensional statistics -- it changes a combinatorial problem of choosing which subset of the parameter are zero, into a simple continuous optimization. Using a continuous prior concentrated near zero, the Bayesian counterparts are successful in quantifying the uncertainty in the variable selection problems; nevertheless, the lack of exact zeros makes it difficult for broader problems such as the change-point detection and rank selection. Inspired by the duality of the l1-regularization as a constraint onto an l1-ball, we propose a new prior by projecting a continuous distribution onto the l1-ball. This creates a positive probability on the ball boundary, which contains both continuous elements and exact zeros. Unlike the spike-and-slab prior, this l1-ball projection is continuous and differentiable almost surely, making the posterior estimation amenable to the Hamiltonian Monte Carlo algorithm. We examine the properties, such as the volume change due to the projection, the connection to the combinatorial prior, the minimax concentration rate in the linear problem. We demonstrate the usefulness of exact zeros that simplify the combinatorial problems, such as the change-point detection in time series, the dimension selection of mixture model and the low-rank-plus-sparse change detection in the medical images.
We consider a symmetric mixture of linear regressions with random samples from the pairwise comparison design, which can be seen as a noisy version of a type of Euclidean distance geometry problem. We analyze the expectation-maximization (EM) algorithm locally around the ground truth and establish that the sequence converges linearly, providing an $\ell_\infty$-norm guarantee on the estimation error of the iterates. Furthermore, we show that the limit of the EM sequence achieves the sharp rate of estimation in the $\ell_2$-norm, matching the information-theoretically optimal constant. We also argue through simulation that convergence from a random initialization is much more delicate in this setting, and does not appear to occur in general. Our results show that the EM algorithm can exhibit several unique behaviors when the covariate distribution is suitably structured.
Deep learning-based algorithms, e.g., convolutional networks, have significantly facilitated multivariate time series classification (MTSC) task. Nevertheless, they suffer from the limitation in modeling long-range dependence due to the nature of convolution operations. Recent advancements have shown the potential of transformers to capture long-range dependence. However, it would incur severe issues, such as fixed scale representations, temporal-invariant and quadratic time complexity, with transformers directly applicable to the MTSC task because of the distinct properties of time series data. To tackle these issues, we propose FormerTime, an hierarchical representation model for improving the classification capacity for the MTSC task. In the proposed FormerTime, we employ a hierarchical network architecture to perform multi-scale feature maps. Besides, a novel transformer encoder is further designed, in which an efficient temporal reduction attention layer and a well-informed contextual positional encoding generating strategy are developed. To sum up, FormerTime exhibits three aspects of merits: (1) learning hierarchical multi-scale representations from time series data, (2) inheriting the strength of both transformers and convolutional networks, and (3) tacking the efficiency challenges incurred by the self-attention mechanism. Extensive experiments performed on $10$ publicly available datasets from UEA archive verify the superiorities of the FormerTime compared to previous competitive baselines.
Non-rigid 3D registration, which deforms a source 3D shape in a non-rigid way to align with a target 3D shape, is a classical problem in computer vision. Such problems can be challenging because of imperfect data (noise, outliers and partial overlap) and high degrees of freedom. Existing methods typically adopt the $\ell_p$ type robust norm to measure the alignment error and regularize the smoothness of deformation, and use a proximal algorithm to solve the resulting non-smooth optimization problem. However, the slow convergence of such algorithms limits their wide applications. In this paper, we propose a formulation for robust non-rigid registration based on a globally smooth robust norm for alignment and regularization, which can effectively handle outliers and partial overlaps. The problem is solved using the majorization-minimization algorithm, which reduces each iteration to a convex quadratic problem with a closed-form solution. We further apply Anderson acceleration to speed up the convergence of the solver, enabling the solver to run efficiently on devices with limited compute capability. Extensive experiments demonstrate the effectiveness of our method for non-rigid alignment between two shapes with outliers and partial overlaps, with quantitative evaluation showing that it outperforms state-of-the-art methods in terms of registration accuracy and computational speed. The source code is available at //github.com/yaoyx689/AMM_NRR.
Studying the computational complexity of determining winners under voting rules and designing fast algorithms are classical and fundamental questions in computational social choice. In this paper, we accelerate voting by leveraging quantum computing. We propose a quantum voting algorithm that can be applied to any anonymous voting rule. We further show that our algorithm can be quadratically faster than any classical sampling algorithm under a wide range of common voting rules, including plurality, Borda, Copeland, and STV. Precisely, our quantum voting algorithm achieves an accuracy of at least $1 - \varepsilon$ with runtime $\Theta\left(\frac{n\cdot\log(1/\varepsilon)}{\text{MOV}}\right)$, where $n$ is the number of votes and $\text{MOV}$ is margin of victory, the smallest number of voters to change the winner. On the other hand, any classical voting algorithm based on sampling a subset of voting achieves the same accuracy with runtime $\Theta\left(\frac{n^2\cdot\log(1/\varepsilon)}{\text{MOV}^2}\right)$ [Bhattacharyya and Dey, 2021]. Our theoretical results are supported by experiments under the plurality and Borda rule.
We investigate opinion dynamics in a fully-connected system, consisting of $n$ identical and anonymous agents, where one of the opinions (which is called correct) represents a piece of information to disseminate. In more detail, one source agent initially holds the correct opinion and remains with this opinion throughout the execution. The goal for non-source agents is to quickly agree on this correct opinion, and do that robustly, i.e., from any initial configuration. The system evolves in rounds. In each round, one agent chosen uniformly at random is activated: unless it is the source, the agent pulls the opinions of $\ell$ random agents and then updates its opinion according to some rule. We consider a restricted setting, in which agents have no memory and they only revise their opinions on the basis of those of the agents they currently sample. As restricted as it is, this setting encompasses very popular opinion dynamics, such as the voter model and best-of-$k$ majority rules. Qualitatively speaking, we show that lack of memory prevents efficient convergence. Specifically, we prove that no dynamics can achieve correct convergence in an expected number of steps that is sub-quadratic in $n$, even under a strong version of the model in which activated agents have complete access to the current configuration of the entire system, i.e., the case $\ell=n$. Conversely, we prove that the simple voter model (in which $\ell=1$) correctly solves the problem, while almost matching the aforementioned lower bound. These results suggest that, in contrast to symmetric consensus problems (that do not involve a notion of correct opinion), fast convergence on the correct opinion using stochastic opinion dynamics may indeed require the use of memory. This insight may reflect on natural information dissemination processes that rely on a few knowledgeable individuals.
In representation learning, a common approach is to seek representations which disentangle the underlying factors of variation. Eastwood & Williams (2018) proposed three metrics for quantifying the quality of such disentangled representations: disentanglement (D), completeness (C) and informativeness (I). In this work, we first connect this DCI framework to two common notions of linear and nonlinear identifiability, thereby establishing a formal link between disentanglement and the closely-related field of independent component analysis. We then propose an extended DCI-ES framework with two new measures of representation quality - explicitness (E) and size (S) - and point out how D and C can be computed for black-box predictors. Our main idea is that the functional capacity required to use a representation is an important but thus-far neglected aspect of representation quality, which we quantify using explicitness or ease-of-use (E). We illustrate the relevance of our extensions on the MPI3D and Cars3D datasets.