Studying the computational complexity of determining winners under voting rules and designing fast algorithms are classical and fundamental questions in computational social choice. In this paper, we accelerate voting by leveraging quantum computing. We propose a quantum voting algorithm that can be applied to any anonymous voting rule. We further show that our algorithm can be quadratically faster than any classical sampling algorithm under a wide range of common voting rules, including plurality, Borda, Copeland, and STV. Precisely, our quantum voting algorithm achieves an accuracy of at least $1 - \varepsilon$ with runtime $\Theta\left(\frac{n\cdot\log(1/\varepsilon)}{\text{MOV}}\right)$, where $n$ is the number of votes and $\text{MOV}$ is margin of victory, the smallest number of voters to change the winner. On the other hand, any classical voting algorithm based on sampling a subset of voting achieves the same accuracy with runtime $\Theta\left(\frac{n^2\cdot\log(1/\varepsilon)}{\text{MOV}^2}\right)$ [Bhattacharyya and Dey, 2021]. Our theoretical results are supported by experiments under the plurality and Borda rule.
Branch-and-bound-based consensus maximization stands out due to its important ability of retrieving the globally optimal solution to outlier-affected geometric problems. However, while the discovery of such solutions caries high scientific value, its application in practical scenarios is often prohibited by its computational complexity growing exponentially as a function of the dimensionality of the problem at hand. In this work, we convey a novel, general technique that allows us to branch over an $n-1$ dimensional space for an n-dimensional problem. The remaining degree of freedom can be solved globally optimally within each bound calculation by applying the efficient interval stabbing technique. While each individual bound derivation is harder to compute owing to the additional need for solving a sorting problem, the reduced number of intervals and tighter bounds in practice lead to a significant reduction in the overall number of required iterations. Besides an abstract introduction of the approach, we present applications to three fundamental geometric computer vision problems: camera resectioning, relative camera pose estimation, and point set registration. Through our exhaustive tests, we demonstrate significant speed-up factors at times exceeding two orders of magnitude, thereby increasing the viability of globally optimal consensus maximizers in online application scenarios.
Given the ubiquity of non-separable optimization problems in real worlds, in this paper we analyze and extend the large-scale version of the well-known cooperative coevolution (CC), a divide-and-conquer optimization framework, on non-separable functions. First, we reveal empirical reasons of why decomposition-based methods are preferred or not in practice on some non-separable large-scale problems, which have not been clearly pointed out in many previous CC papers. Then, we formalize CC to a continuous game model via simplification, but without losing its essential property. Different from previous evolutionary game theory for CC, our new model provides a much simpler but useful viewpoint to analyze its convergence, since only the pure Nash equilibrium concept is needed and more general fitness landscapes can be explicitly considered. Based on convergence analyses, we propose a hierarchical decomposition strategy for better generalization, as for any decomposition there is a risk of getting trapped into a suboptimal Nash equilibrium. Finally, we use powerful distributed computing to accelerate it under the multi-level learning framework, which combines the fine-tuning ability from decomposition with the invariance property of CMA-ES. Experiments on a set of high-dimensional functions validate both its search performance and scalability (w.r.t. CPU cores) on a clustering computing platform with 400 CPU cores.
Quantum conference key agreement is an important cryptographic primitive for future quantum network. Realizing this primitive requires high-brightness and robust multiphoton entanglement sources, which is challenging in experiment and unpractical in application because of limited transmission distance caused by channel loss. Here we report a measurement-device-independent quantum conference key agreement protocol with enhanced transmission efficiency over lossy channel. With spatial multiplexing nature and adaptive operation, our protocol can break key rate bounds on quantum communication over quantum network without quantum memory. Compared with previous work, our protocol shows superiority in key rate and transmission distance within the state-of-the-art technology. Furthermore, we analyse the security of our protocol in the composable framework and evaluate its performance in the finite-size regime to show practicality. Based on our results, we anticipate that our protocol will play an indispensable role in constructing multipartite quantum network.
In building practical applications of evolutionary computation (EC), two optimizations are essential. First, the parameters of the search method need to be tuned to the domain in order to balance exploration and exploitation effectively. Second, the search method needs to be distributed to take advantage of parallel computing resources. This paper presents BLADE (BLAnket Distributed Evolution) as an approach to achieving both goals simultaneously. BLADE uses blankets (i.e., masks on the genetic representation) to tune the evolutionary operators during the search, and implements the search through hub-and-spoke distribution. In the paper, (1) the blanket method is formalized for the (1 + 1)EA case as a Markov chain process. Its effectiveness is then demonstrated by analyzing dominant and subdominant eigenvalues of stochastic matrices, suggesting a generalizable theory; (2) the fitness-level theory is used to analyze the distribution method; and (3) these insights are verified experimentally on three benchmark problems, showing that both blankets and distribution lead to accelerated evolution. Moreover, a surprising synergy emerges between them: When combined with distribution, the blanket approach achieves more than $n$-fold speedup with $n$ clients in some cases. The work thus highlights the importance and potential of optimizing evolutionary computation in practical applications.
We establish a phase transition known as the "all-or-nothing" phenomenon for noiseless discrete channels. This class of models includes the Bernoulli group testing model and the planted Gaussian perceptron model. Previously, the existence of the all-or-nothing phenomenon for such models was only known in a limited range of parameters. Our work extends the results to all signals with arbitrary sublinear sparsity. Over the past several years, the all-or-nothing phenomenon has been established in various models as an outcome of two seemingly disjoint results: one positive result establishing the "all" half of all-or-nothing, and one impossibility result establishing the "nothing" half. Our main technique in the present work is to show that for noiseless discrete channels, the "all" half implies the "nothing" half, that is a proof of "all" can be turned into a proof of "nothing." Since the "all" half can often be proven by straightforward means -- for instance, by the first-moment method -- our equivalence gives a powerful and general approach towards establishing the existence of this phenomenon in other contexts.
Numerical vector aggregation plays a crucial role in privacy-sensitive applications, such as distributed gradient estimation in federated learning and statistical analysis of key-value data. In the context of local differential privacy, this study provides a tight minimax error bound of $O(\frac{ds}{n\epsilon^2})$, where $d$ represents the dimension of the numerical vector and $s$ denotes the number of non-zero entries. By converting the conditional/unconditional numerical mean estimation problem into a frequency estimation problem, we develop an optimal and efficient mechanism called Collision. In contrast, existing methods exhibit sub-optimal error rates of $O(\frac{d^2}{n\epsilon^2})$ or $O(\frac{ds^2}{n\epsilon^2})$. Specifically, for unconditional mean estimation, we leverage the negative correlation between two frequencies in each dimension and propose the CoCo mechanism, which further reduces estimation errors for mean values compared to Collision. Moreover, to surpass the error barrier in local privacy, we examine privacy amplification in the shuffle model for the proposed mechanisms and derive precisely tight amplification bounds. Our experiments validate and compare our mechanisms with existing approaches, demonstrating significant error reductions for frequency estimation and mean estimation on numerical vectors.
Entanglement is a quantum resource, in some ways analogous to randomness in classical computation. Inspired by recent work of Gheorghiu and Hoban, we define the notion of "pseudoentanglement'', a property exhibited by ensembles of efficiently constructible quantum states which are indistinguishable from quantum states with maximal entanglement. Our construction relies on the notion of quantum pseudorandom states -- first defined by Ji, Liu and Song -- which are efficiently constructible states indistinguishable from (maximally entangled) Haar-random states. Specifically, we give a construction of pseudoentangled states with entanglement entropy arbitrarily close to $\log n$ across every cut, a tight bound providing an exponential separation between computational vs information theoretic quantum pseudorandomness. We discuss applications of this result to Matrix Product State testing, entanglement distillation, and the complexity of the AdS/CFT correspondence. As compared with a previous version of this manuscript (arXiv:2211.00747v1) this version introduces a new pseudorandom state construction, has a simpler proof of correctness, and achieves a technically stronger result of low entanglement across all cuts simultaneously.
Given that reliable cloud quantum computers are becoming closer to reality, the concept of delegation of quantum computations and its verifiability is of central interest. Many models have been proposed, each with specific strengths and weaknesses. Here, we put forth a new model where the client trusts only its classical processing, makes no computational assumptions, and interacts with a quantum server in a single round. In addition, during a set-up phase, the client specifies the size $n$ of the computation and receives an untrusted, off-the-shelf (OTS) quantum device that is used to report the outcome of a single constant-sized measurement from a predetermined logarithmic-sized input. In the OTS model, we thus picture that a single quantum server does the bulk of the computations, while the OTS device is used as an untrusted and generic verification device, all in a single round. We show how to delegate polynomial-time quantum computations in the OTS model. Scaling up the technique also yields an interactive proof system for all of QMA, which, furthermore, we show can be accomplished in statistical zero-knowledge. This yields the first relativistic (one-round), two-prover zero-knowledge proof system for QMA. As a proof approach, we provide a new self-test for $n$-EPR pairs using only constant-sized Pauli measurements, and show how it provides a new avenue for the use of simulatable codes for local Hamiltonian verification. Along the way, we also provide an enhanced version of a well-known stability result due to Gowers and Hatami and show how it completes a common argument used in self-testing.
Quantum machine learning is a promising programming paradigm for the optimization of quantum algorithms in the current era of noisy intermediate scale quantum (NISQ) computers. A fundamental challenge in quantum machine learning is generalization, as the designer targets performance under testing conditions, while having access only to limited training data. Existing generalization analyses, while identifying important general trends and scaling laws, cannot be used to assign reliable and informative "error bars" to the decisions made by quantum models. In this article, we propose a general methodology that can reliably quantify the uncertainty of quantum models, irrespective of the amount of training data, of the number of shots, of the ansatz, of the training algorithm, and of the presence of quantum hardware noise. The approach, which builds on probabilistic conformal prediction, turns an arbitrary, possibly small, number of shots from a pre-trained quantum model into a set prediction, e.g., an interval, that provably contains the true target with any desired coverage level. Experimental results confirm the theoretical calibration guarantees of the proposed framework, referred to as quantum conformal prediction.
Normalization is known to help the optimization of deep neural networks. Curiously, different architectures require specialized normalization methods. In this paper, we study what normalization is effective for Graph Neural Networks (GNNs). First, we adapt and evaluate the existing methods from other domains to GNNs. Faster convergence is achieved with InstanceNorm compared to BatchNorm and LayerNorm. We provide an explanation by showing that InstanceNorm serves as a preconditioner for GNNs, but such preconditioning effect is weaker with BatchNorm due to the heavy batch noise in graph datasets. Second, we show that the shift operation in InstanceNorm results in an expressiveness degradation of GNNs for highly regular graphs. We address this issue by proposing GraphNorm with a learnable shift. Empirically, GNNs with GraphNorm converge faster compared to GNNs using other normalization. GraphNorm also improves the generalization of GNNs, achieving better performance on graph classification benchmarks.