In building practical applications of evolutionary computation (EC), two optimizations are essential. First, the parameters of the search method need to be tuned to the domain in order to balance exploration and exploitation effectively. Second, the search method needs to be distributed to take advantage of parallel computing resources. This paper presents BLADE (BLAnket Distributed Evolution) as an approach to achieving both goals simultaneously. BLADE uses blankets (i.e., masks on the genetic representation) to tune the evolutionary operators during the search, and implements the search through hub-and-spoke distribution. In the paper, (1) the blanket method is formalized for the (1 + 1)EA case as a Markov chain process. Its effectiveness is then demonstrated by analyzing dominant and subdominant eigenvalues of stochastic matrices, suggesting a generalizable theory; (2) the fitness-level theory is used to analyze the distribution method; and (3) these insights are verified experimentally on three benchmark problems, showing that both blankets and distribution lead to accelerated evolution. Moreover, a surprising synergy emerges between them: When combined with distribution, the blanket approach achieves more than $n$-fold speedup with $n$ clients in some cases. The work thus highlights the importance and potential of optimizing evolutionary computation in practical applications.
Graph neural networks (GNNs) are powerful tools for exploring and learning from graph structures and features. As such, achieving high-performance execution for GNNs becomes crucially important. Prior works have proposed to explore the sparsity (i.e., low density) in the input graph to accelerate GNNs, which uses the full-graph-level or block-level sparsity format. We show that they fail to balance the sparsity benefit and kernel execution efficiency. In this paper, we propose a novel system, referred to as AdaptGear, that addresses the challenge of optimizing GNNs performance by leveraging kernels tailored to the density characteristics at the subgraph level. Meanwhile, we also propose a method that dynamically chooses the optimal set of kernels for a given input graph. Our evaluation shows that AdaptGear can achieve a significant performance improvement, up to $6.49 \times$ ($1.87 \times$ on average), over the state-of-the-art works on two mainstream NVIDIA GPUs across various datasets.
Count data are omnipresent in many applied fields, often with overdispersion. With mixtures of Poisson distributions representing an elegant and appealing modelling strategy, we focus here on how the tail behaviour of the mixing distribution is related to the tail of the resulting Poisson mixture. We define five sets of mixing distributions and we identify for each case whenever the Poisson mixture is in, close to or far from a domain of attraction of maxima. We also characterize how the Poisson mixture behaves similarly to a standard Poisson distribution when the mixing distribution has a finite support. Finally, we study, both analytically and numerically, how goodness-of-fit can be assessed with the inspection of tail behaviour.
Since the control of the Lipschitz constant has a great impact on the training stability, generalization, and robustness of neural networks, the estimation of this value is nowadays a real scientific challenge. In this paper we introduce a precise, fast, and differentiable upper bound for the spectral norm of convolutional layers using circulant matrix theory and a new alternative to the Power iteration. Called the Gram iteration, our approach exhibits a superlinear convergence. First, we show through a comprehensive set of experiments that our approach outperforms other state-of-the-art methods in terms of precision, computational cost, and scalability. Then, it proves highly effective for the Lipschitz regularization of convolutional neural networks, with competitive results against concurrent approaches. Code is available at //github.com/blaisedelattre/lip4conv.
We propose a novel ray reordering technique to accelerate the ray tracing process by encoding and sorting rays prior to traversal. Instead of spatial coordinates, our method encodes rays according to the cuts of the hierarchical acceleration structure, which is called the \textbf{hierarchy cut code}. This approach can better adapt to the acceleration structure and obtain a more reliable encoding result. We also propose a compression scheme to decrease the sorting overhead by a shorter sorting key. In addition, based on the phenomenon of boundary drift, we theoretically explain the reason why existing reordering methods cannot achieve better performance by using longer sorting keys. The experiment demonstrates that our method can accelerate secondary ray tracing by up to 1.81 times, outperforming the existing methods. Such result proves the effectiveness of hierarchy cut code, and indicate that the reordering technique can achieve greater performance improvement, which worth further research.
Adversarial detection aims to determine whether a given sample is an adversarial one based on the discrepancy between natural and adversarial distributions. Unfortunately, estimating or comparing two data distributions is extremely difficult, especially in high-dimension spaces. Recently, the gradient of log probability density (a.k.a., score) w.r.t. the sample is used as an alternative statistic to compute. However, we find that the score is sensitive in identifying adversarial samples due to insufficient information with one sample only. In this paper, we propose a new statistic called expected perturbation score (EPS), which is essentially the expected score of a sample after various perturbations. Specifically, to obtain adequate information regarding one sample, we perturb it by adding various noises to capture its multi-view observations. We theoretically prove that EPS is a proper statistic to compute the discrepancy between two samples under mild conditions. In practice, we can use a pre-trained diffusion model to estimate EPS for each sample. Last, we propose an EPS-based adversarial detection (EPS-AD) method, in which we develop EPS-based maximum mean discrepancy (MMD) as a metric to measure the discrepancy between the test sample and natural samples. We also prove that the EPS-based MMD between natural and adversarial samples is larger than that among natural samples. Extensive experiments show the superior adversarial detection performance of our EPS-AD.
In the UAM space, strategic deconfliction provides an all-essential layer to airspace automation by providing safe, preemptive deconfliction or assignment of airspace resources to airspace users pre-flight. Strategic deconfliction approaches provide an elegant solution to pre-flight deconfliction operations. This overall creates safer and more efficient airspace and reduces the workload on controllers. In this research, we propose a method that constructs routes between start and end nodes in airspace, assigns a contract of operational volumes (OVs) and ensures that these OVs are sufficiently deconflicted against static no-fly zones and OVs of other airspace users. Our approach uses the A* optimal cost path algorithm to generate the shortest routes between the origin and destination. We present a method for generating OVs based on the distribution of aircraft positions from simulated flights; volumes are constructed such that this distribution is conservatively described.
This work introduces an empirical quadrature-based hyperreduction procedure and greedy training algorithm to effectively reduce the computational cost of solving convection-dominated problems with limited training. The proposed approach circumvents the slowly decaying $n$-width limitation of linear model reduction techniques applied to convection-dominated problems by using a nonlinear approximation manifold systematically defined by composing a low-dimensional affine space with bijections of the underlying domain. The reduced-order model is defined as the solution of a residual minimization problem over the nonlinear manifold. An online-efficient method is obtained by using empirical quadrature to approximate the optimality system such that it can be solved with mesh-independent operations. The proposed reduced-order model is trained using a greedy procedure to systematically sample the parameter domain. The effectiveness of the proposed approach is demonstrated on two shock-dominated computational fluid dynamics benchmarks.
The conjoining of dynamical systems and deep learning has become a topic of great interest. In particular, neural differential equations (NDEs) demonstrate that neural networks and differential equation are two sides of the same coin. Traditional parameterised differential equations are a special case. Many popular neural network architectures, such as residual networks and recurrent networks, are discretisations. NDEs are suitable for tackling generative problems, dynamical systems, and time series (particularly in physics, finance, ...) and are thus of interest to both modern machine learning and traditional mathematical modelling. NDEs offer high-capacity function approximation, strong priors on model space, the ability to handle irregular data, memory efficiency, and a wealth of available theory on both sides. This doctoral thesis provides an in-depth survey of the field. Topics include: neural ordinary differential equations (e.g. for hybrid neural/mechanistic modelling of physical systems); neural controlled differential equations (e.g. for learning functions of irregular time series); and neural stochastic differential equations (e.g. to produce generative models capable of representing complex stochastic dynamics, or sampling from complex high-dimensional distributions). Further topics include: numerical methods for NDEs (e.g. reversible differential equations solvers, backpropagation through differential equations, Brownian reconstruction); symbolic regression for dynamical systems (e.g. via regularised evolution); and deep implicit models (e.g. deep equilibrium models, differentiable optimisation). We anticipate this thesis will be of interest to anyone interested in the marriage of deep learning with dynamical systems, and hope it will provide a useful reference for the current state of the art.
Effective multi-robot teams require the ability to move to goals in complex environments in order to address real-world applications such as search and rescue. Multi-robot teams should be able to operate in a completely decentralized manner, with individual robot team members being capable of acting without explicit communication between neighbors. In this paper, we propose a novel game theoretic model that enables decentralized and communication-free navigation to a goal position. Robots each play their own distributed game by estimating the behavior of their local teammates in order to identify behaviors that move them in the direction of the goal, while also avoiding obstacles and maintaining team cohesion without collisions. We prove theoretically that generated actions approach a Nash equilibrium, which also corresponds to an optimal strategy identified for each robot. We show through extensive simulations that our approach enables decentralized and communication-free navigation by a multi-robot system to a goal position, and is able to avoid obstacles and collisions, maintain connectivity, and respond robustly to sensor noise.
Normalization is known to help the optimization of deep neural networks. Curiously, different architectures require specialized normalization methods. In this paper, we study what normalization is effective for Graph Neural Networks (GNNs). First, we adapt and evaluate the existing methods from other domains to GNNs. Faster convergence is achieved with InstanceNorm compared to BatchNorm and LayerNorm. We provide an explanation by showing that InstanceNorm serves as a preconditioner for GNNs, but such preconditioning effect is weaker with BatchNorm due to the heavy batch noise in graph datasets. Second, we show that the shift operation in InstanceNorm results in an expressiveness degradation of GNNs for highly regular graphs. We address this issue by proposing GraphNorm with a learnable shift. Empirically, GNNs with GraphNorm converge faster compared to GNNs using other normalization. GraphNorm also improves the generalization of GNNs, achieving better performance on graph classification benchmarks.