亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This work introduces an empirical quadrature-based hyperreduction procedure and greedy training algorithm to effectively reduce the computational cost of solving convection-dominated problems with limited training. The proposed approach circumvents the slowly decaying $n$-width limitation of linear model reduction techniques applied to convection-dominated problems by using a nonlinear approximation manifold systematically defined by composing a low-dimensional affine space with bijections of the underlying domain. The reduced-order model is defined as the solution of a residual minimization problem over the nonlinear manifold. An online-efficient method is obtained by using empirical quadrature to approximate the optimality system such that it can be solved with mesh-independent operations. The proposed reduced-order model is trained using a greedy procedure to systematically sample the parameter domain. The effectiveness of the proposed approach is demonstrated on two shock-dominated computational fluid dynamics benchmarks.

相關內容

We propose a novel learning-based surrogate data assimilation (DA) model for efficient state estimation in a limited area. Our model employs a feedforward neural network for online computation, eliminating the need for integrating high-dimensional limited-area models. This approach offers significant computational advantages over traditional DA algorithms. Furthermore, our method avoids the requirement of lateral boundary conditions for the limited-area model in both online and offline computations. The design of our surrogate DA model is built upon a robust theoretical framework that leverages two fundamental concepts: observability and effective region. The concept of observability enables us to quantitatively determine the optimal amount of observation data necessary for accurate DA. Meanwhile, the concept of effective region substantially reduces the computational burden associated with computing observability and generating training data.

Density-functional theory (DFT) has revolutionized computer simulations in chemistry and material science. A faithful implementation of the theory requires self-consistent calculations. However, this effort involves repeatedly diagonalizing the Hamiltonian, for which a classical algorithm typically requires a computational complexity that scales cubically with respect to the number of electrons. This limits DFT's applicability to large-scale problems with complex chemical environments and microstructures. This article presents a quantum algorithm that has a linear scaling with respect to the number of atoms, which is much smaller than the number of electrons. Our algorithm leverages the quantum singular value transformation (QSVT) to generate a quantum circuit to encode the density-matrix, and an estimation method for computing the output electron density. In addition, we present a randomized block coordinate fixed-point method to accelerate the self-consistent field calculations by reducing the number of components of the electron density that needs to be estimated. The proposed framework is accompanied by a rigorous error analysis that quantifies the function approximation error, the statistical fluctuation, and the iteration complexity. In particular, the analysis of our self-consistent iterations takes into account the measurement noise from the quantum circuit. These advancements offer a promising avenue for tackling large-scale DFT problems, enabling simulations of complex systems that were previously computationally infeasible.

The aim of this article is to analyze numerical schemes using two-layer neural networks with infinite width for the resolution of the high-dimensional Poisson-Neumann partial differential equations (PDEs) with Neumann boundary conditions. Using Barron's representation of the solution with a measure of probability, the energy is minimized thanks to a gradient curve dynamic on the $2$ Wasserstein space of parameters defining the neural network. Inspired by the work from Bach and Chizat, we prove that if the gradient curve converges, then the represented function is the solution of the elliptic equation considered. Numerical experiments are given to show the potential of the method.

Analysis of high-dimensional data, where the number of covariates is larger than the sample size, is a topic of current interest. In such settings, an important goal is to estimate the signal level $\tau^2$ and noise level $\sigma^2$, i.e., to quantify how much variation in the response variable can be explained by the covariates, versus how much of the variation is left unexplained. This thesis considers the estimation of these quantities in a semi-supervised setting, where for many observations only the vector of covariates $X$ is given with no responses $Y$. Our main research question is: how can one use the unlabeled data to better estimate $\tau^2$ and $\sigma^2$? We consider two frameworks: a linear regression model and a linear projection model in which linearity is not assumed. In the first framework, while linear regression is used, no sparsity assumptions on the coefficients are made. In the second framework, the linearity assumption is also relaxed and we aim to estimate the signal and noise levels defined by the linear projection. We first propose a naive estimator which is unbiased and consistent, under some assumptions, in both frameworks. We then show how the naive estimator can be improved by using zero-estimators, where a zero-estimator is a statistic arising from the unlabeled data, whose expected value is zero. In the first framework, we calculate the optimal zero-estimator improvement and discuss ways to approximate the optimal improvement. In the second framework, such optimality does no longer hold and we suggest two zero-estimators that improve the naive estimator although not necessarily optimally. Furthermore, we show that our approach reduces the variance for general initial estimators and we present an algorithm that potentially improves any initial estimator. Lastly, we consider four datasets and study the performance of our suggested methods.

In this work, we propose a novel approach called Operational Support Estimator Networks (OSENs) for the support estimation task. Support Estimation (SE) is defined as finding the locations of non-zero elements in a sparse signal. By its very nature, the mapping between the measurement and sparse signal is a non-linear operation. Traditional support estimators rely on computationally expensive iterative signal recovery techniques to achieve such non-linearity. Contrary to the convolution layers, the proposed OSEN approach consists of operational layers that can learn such complex non-linearities without the need for deep networks. In this way, the performance of the non-iterative support estimation is greatly improved. Moreover, the operational layers comprise so-called generative \textit{super neurons} with non-local kernels. The kernel location for each neuron/feature map is optimized jointly for the SE task during the training. We evaluate the OSENs in three different applications: i. support estimation from Compressive Sensing (CS) measurements, ii. representation-based classification, and iii. learning-aided CS reconstruction where the output of OSENs is used as prior knowledge to the CS algorithm for an enhanced reconstruction. Experimental results show that the proposed approach achieves computational efficiency and outperforms competing methods, especially at low measurement rates by a significant margin. The software implementation is publicly shared at //github.com/meteahishali/OSEN.

Physics-informed neural networks (PINNs) have emerged as promising surrogate modes for solving partial differential equations (PDEs). Their effectiveness lies in the ability to capture solution-related features through neural networks. However, original PINNs often suffer from bottlenecks, such as low accuracy and non-convergence, limiting their applicability in complex physical contexts. To alleviate these issues, we proposed auxiliary-task learning-based physics-informed neural networks (ATL-PINNs), which provide four different auxiliary-task learning modes and investigate their performance compared with original PINNs. We also employ the gradient cosine similarity algorithm to integrate auxiliary problem loss with the primary problem loss in ATL-PINNs, which aims to enhance the effectiveness of the auxiliary-task learning modes. To the best of our knowledge, this is the first study to introduce auxiliary-task learning modes in the context of physics-informed learning. We conduct experiments on three PDE problems across different fields and scenarios. Our findings demonstrate that the proposed auxiliary-task learning modes can significantly improve solution accuracy, achieving a maximum performance boost of 96.62% (averaging 28.23%) compared to the original single-task PINNs. The code and dataset are open source at //github.com/junjun-yan/ATL-PINN.

We consider the estimation of factor model-based variance-covariance matrix when the factor loading matrix is assumed sparse. To do so, we rely on a system of penalized estimating functions to account for the identification issue of the factor loading matrix while fostering sparsity in potentially all its entries. We prove the oracle property of the penalized estimator for the factor model when the dimension is fixed. That is, the penalization procedure can recover the true sparse support, and the estimator is asymptotically normally distributed. Consistency and recovery of the true zero entries are established when the number of parameters is diverging. These theoretical results are supported by simulation experiments, and the relevance of the proposed method is illustrated by an application to portfolio allocation.

The number of modes in a probability density function is representative of the model's complexity and can also be viewed as the number of existing subpopulations. Despite its relevance, little research has been devoted to its estimation. Focusing on the univariate setting, we propose a novel approach targeting prediction accuracy inspired by some overlooked aspects of the problem. We argue for the need for structure in the solutions, the subjective and uncertain nature of modes, and the convenience of a holistic view blending global and local density properties. Our method builds upon a combination of flexible kernel estimators and parsimonious compositional splines. Feature exploration, model selection and mode testing are implemented in the Bayesian inference paradigm, providing soft solutions and allowing to incorporate expert judgement in the process. The usefulness of our proposal is illustrated through a case study in sports analytics, showcasing multiple companion visualisation tools. A thorough simulation study demonstrates that traditional modality-driven approaches paradoxically struggle to provide accurate results. In this context, our method emerges as a top-tier alternative offering innovative solutions for analysts.

In this paper, we propose a novel algorithm called Neuron-wise Parallel Subspace Correction Method (NPSC) for the finite neuron method that approximates numerical solutions of partial differential equations (PDEs) using neural network functions. Despite extremely extensive research activities in applying neural networks for numerical PDEs, there is still a serious lack of effective training algorithms that can achieve adequate accuracy, even for one-dimensional problems. Based on recent results on the spectral properties of linear layers and landscape analysis for single neuron problems, we develop a special type of subspace correction method that optimizes the linear layer and each neuron in the nonlinear layer separately. An optimal preconditioner that resolves the ill-conditioning of the linear layer is presented for one-dimensional problems, so that the linear layer is trained in a uniform number of iterations with respect to the number of neurons. In each single neuron problem, a good local minimum that avoids flat energy regions is found by a superlinearly convergent algorithm. Numerical experiments on function approximation problems and PDEs demonstrate better performance of the proposed method than other gradient-based methods.

The conjoining of dynamical systems and deep learning has become a topic of great interest. In particular, neural differential equations (NDEs) demonstrate that neural networks and differential equation are two sides of the same coin. Traditional parameterised differential equations are a special case. Many popular neural network architectures, such as residual networks and recurrent networks, are discretisations. NDEs are suitable for tackling generative problems, dynamical systems, and time series (particularly in physics, finance, ...) and are thus of interest to both modern machine learning and traditional mathematical modelling. NDEs offer high-capacity function approximation, strong priors on model space, the ability to handle irregular data, memory efficiency, and a wealth of available theory on both sides. This doctoral thesis provides an in-depth survey of the field. Topics include: neural ordinary differential equations (e.g. for hybrid neural/mechanistic modelling of physical systems); neural controlled differential equations (e.g. for learning functions of irregular time series); and neural stochastic differential equations (e.g. to produce generative models capable of representing complex stochastic dynamics, or sampling from complex high-dimensional distributions). Further topics include: numerical methods for NDEs (e.g. reversible differential equations solvers, backpropagation through differential equations, Brownian reconstruction); symbolic regression for dynamical systems (e.g. via regularised evolution); and deep implicit models (e.g. deep equilibrium models, differentiable optimisation). We anticipate this thesis will be of interest to anyone interested in the marriage of deep learning with dynamical systems, and hope it will provide a useful reference for the current state of the art.

北京阿比特科技有限公司