亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Due to depth ambiguities and occlusions, lifting 2D poses to 3D is a highly ill-posed problem. Well-calibrated distributions of possible poses can make these ambiguities explicit and preserve the resulting uncertainty for downstream tasks. This study shows that previous attempts, which account for these ambiguities via multiple hypotheses generation, produce miscalibrated distributions. We identify that miscalibration can be attributed to the use of sample-based metrics such as minMPJPE. In a series of simulations, we show that minimizing minMPJPE, as commonly done, should converge to the correct mean prediction. However, it fails to correctly capture the uncertainty, thus resulting in a miscalibrated distribution. To mitigate this problem, we propose an accurate and well-calibrated model called Conditional Graph Normalizing Flow (cGNFs). Our model is structured such that a single cGNF can estimate both conditional and marginal densities within the same model - effectively solving a zero-shot density estimation problem. We evaluate cGNF on the Human~3.6M dataset and show that cGNF provides a well-calibrated distribution estimate while being close to state-of-the-art in terms of overall minMPJPE. Furthermore, cGNF outperforms previous methods on occluded joints while it remains well-calibrated.

相關內容

Object compositing based on 2D images is a challenging problem since it typically involves multiple processing stages such as color harmonization, geometry correction and shadow generation to generate realistic results. Furthermore, annotating training data pairs for compositing requires substantial manual effort from professionals, and is hardly scalable. Thus, with the recent advances in generative models, in this work, we propose a self-supervised framework for object compositing by leveraging the power of conditional diffusion models. Our framework can hollistically address the object compositing task in a unified model, transforming the viewpoint, geometry, color and shadow of the generated object while requiring no manual labeling. To preserve the input object's characteristics, we introduce a content adaptor that helps to maintain categorical semantics and object appearance. A data augmentation method is further adopted to improve the fidelity of the generator. Our method outperforms relevant baselines in both realism and faithfulness of the synthesized result images in a user study on various real-world images.

Tests for structural breaks in time series should ideally be sensitive to breaks in the parameter of interest, while being robust to nuisance changes. Statistical analysis thus needs to allow for some form of nonstationarity under the null hypothesis of no change. In this paper, estimators for integrated parameters of locally stationary time series are constructed and a corresponding functional central limit theorem is established, enabling change-point inference for a broad class of parameters under mild assumptions. The proposed framework covers all parameters which may be expressed as nonlinear functions of moments, for example kurtosis, autocorrelation, and coefficients in a linear regression model. To perform feasible inference based on the derived limit distribution, a bootstrap variant is proposed and its consistency is established. The methodology is illustrated by means of a simulation study and by an application to high-frequency asset prices.

Monocular 3D human pose estimation is quite challenging due to the inherent ambiguity and occlusion, which often lead to high uncertainty and indeterminacy. On the other hand, diffusion models have recently emerged as an effective tool for generating high-quality images from noise. Inspired by their capability, we explore a novel pose estimation framework (DiffPose) that formulates 3D pose estimation as a reverse diffusion process. We incorporate novel designs into our DiffPose that facilitate the diffusion process for 3D pose estimation: a pose-specific initialization of pose uncertainty distributions, a Gaussian Mixture Model-based forward diffusion process, and a context-conditioned reverse diffusion process. Our proposed DiffPose significantly outperforms existing methods on the widely used pose estimation benchmarks Human3.6M and MPI-INF-3DHP.

We study the fundamental question of how to define and measure the distance from calibration for probabilistic predictors. While the notion of perfect calibration is well-understood, there is no consensus on how to quantify the distance from perfect calibration. Numerous calibration measures have been proposed in the literature, but it is unclear how they compare to each other, and many popular measures such as Expected Calibration Error (ECE) fail to satisfy basic properties like continuity. We present a rigorous framework for analyzing calibration measures, inspired by the literature on property testing. We propose a ground-truth notion of distance from calibration: the $\ell_1$ distance to the nearest perfectly calibrated predictor. We define a consistent calibration measure as one that is a polynomial factor approximation to the this distance. Applying our framework, we identify three calibration measures that are consistent and can be estimated efficiently: smooth calibration, interval calibration, and Laplace kernel calibration. The former two give quadratic approximations to the ground truth distance, which we show is information-theoretically optimal. Our work thus establishes fundamental lower and upper bounds on measuring distance to calibration, and also provides theoretical justification for preferring certain metrics (like Laplace kernel calibration) in practice.

In this paper, we propose and showcase, for the first time, monocular multi-view layout estimation for warehouse racks and shelves. Unlike typical layout estimation methods, MVRackLay estimates multi-layered layouts, wherein each layer corresponds to the layout of a shelf within a rack. Given a sequence of images of a warehouse scene, a dual-headed Convolutional-LSTM architecture outputs segmented racks, the front and the top view layout of each shelf within a rack. With minimal effort, such an output is transformed into a 3D rendering of all racks, shelves and objects on the shelves, giving an accurate 3D depiction of the entire warehouse scene in terms of racks, shelves and the number of objects on each shelf. MVRackLay generalizes to a diverse set of warehouse scenes with varying number of objects on each shelf, number of shelves and in the presence of other such racks in the background. Further, MVRackLay shows superior performance vis-a-vis its single view counterpart, RackLay, in layout accuracy, quantized in terms of the mean IoU and mAP metrics. We also showcase a multi-view stitching of the 3D layouts resulting in a representation of the warehouse scene with respect to a global reference frame akin to a rendering of the scene from a SLAM pipeline. To the best of our knowledge, this is the first such work to portray a 3D rendering of a warehouse scene in terms of its semantic components - Racks, Shelves and Objects - all from a single monocular camera.

Multivariate time series anomaly detection has been extensively studied under the semi-supervised setting, where a training dataset with all normal instances is required. However, preparing such a dataset is very laborious since each single data instance should be fully guaranteed to be normal. It is, therefore, desired to explore multivariate time series anomaly detection methods based on the dataset without any label knowledge. In this paper, we propose MTGFlow, an unsupervised anomaly detection approach for multivariate time series anomaly detection via dynamic graph and entity-aware normalizing flow, leaning only on a widely accepted hypothesis that abnormal instances exhibit sparse densities than the normal. However, the complex interdependencies among entities and the diverse inherent characteristics of each entity pose significant challenges on the density estimation, let alone to detect anomalies based on the estimated possibility distribution. To tackle these problems, we propose to learn the mutual and dynamic relations among entities via a graph structure learning model, which helps to model accurate distribution of multivariate time series. Moreover, taking account of distinct characteristics of the individual entities, an entity-aware normalizing flow is developed to describe each entity into a parameterized normal distribution, thereby producing fine-grained density estimation. Incorporating these two strategies, MTGFlow achieves superior anomaly detection performance. Experiments on five public datasets with seven baselines are conducted, MTGFlow outperforms the SOTA methods by up to 5.0 AUROC\%. Codes will be released at //github.com/zqhang/Detecting-Multivariate-Time-Series-Anomalies-with-Zero-Known-Label.

Transfer learning uses a data model, trained to make predictions or inferences on data from one population, to make reliable predictions or inferences on data from another population. Most existing transfer learning approaches are based on fine-tuning pre-trained neural network models, and fail to provide crucial uncertainty quantification. We develop a statistical framework for model predictions based on transfer learning, called RECaST. The primary mechanism is a Cauchy random effect that recalibrates a source model to a target population; we mathematically and empirically demonstrate the validity of our RECaST approach for transfer learning between linear models, in the sense that prediction sets will achieve their nominal stated coverage, and we numerically illustrate the method's robustness to asymptotic approximations for nonlinear models. Whereas many existing techniques are built on particular source models, RECaST is agnostic to the choice of source model. For example, our RECaST transfer learning approach can be applied to a continuous or discrete data model with linear or logistic regression, deep neural network architectures, etc. Furthermore, RECaST provides uncertainty quantification for predictions, which is mostly absent in the literature. We examine our method's performance in a simulation study and in an application to real hospital data.

This work addresses a novel and challenging problem of estimating the full 3D hand shape and pose from a single RGB image. Most current methods in 3D hand analysis from monocular RGB images only focus on estimating the 3D locations of hand keypoints, which cannot fully express the 3D shape of hand. In contrast, we propose a Graph Convolutional Neural Network (Graph CNN) based method to reconstruct a full 3D mesh of hand surface that contains richer information of both 3D hand shape and pose. To train networks with full supervision, we create a large-scale synthetic dataset containing both ground truth 3D meshes and 3D poses. When fine-tuning the networks on real-world datasets without 3D ground truth, we propose a weakly-supervised approach by leveraging the depth map as a weak supervision in training. Through extensive evaluations on our proposed new datasets and two public datasets, we show that our proposed method can produce accurate and reasonable 3D hand mesh, and can achieve superior 3D hand pose estimation accuracy when compared with state-of-the-art methods.

Generative Adversarial Networks (GANs) have recently achieved impressive results for many real-world applications, and many GAN variants have emerged with improvements in sample quality and training stability. However, they have not been well visualized or understood. How does a GAN represent our visual world internally? What causes the artifacts in GAN results? How do architectural choices affect GAN learning? Answering such questions could enable us to develop new insights and better models. In this work, we present an analytic framework to visualize and understand GANs at the unit-, object-, and scene-level. We first identify a group of interpretable units that are closely related to object concepts using a segmentation-based network dissection method. Then, we quantify the causal effect of interpretable units by measuring the ability of interventions to control objects in the output. We examine the contextual relationship between these units and their surroundings by inserting the discovered object concepts into new images. We show several practical applications enabled by our framework, from comparing internal representations across different layers, models, and datasets, to improving GANs by locating and removing artifact-causing units, to interactively manipulating objects in a scene. We provide open source interpretation tools to help researchers and practitioners better understand their GAN models.

We study how to generate captions that are not only accurate in describing an image but also discriminative across different images. The problem is both fundamental and interesting, as most machine-generated captions, despite phenomenal research progresses in the past several years, are expressed in a very monotonic and featureless format. While such captions are normally accurate, they often lack important characteristics in human languages - distinctiveness for each caption and diversity for different images. To address this problem, we propose a novel conditional generative adversarial network for generating diverse captions across images. Instead of estimating the quality of a caption solely on one image, the proposed comparative adversarial learning framework better assesses the quality of captions by comparing a set of captions within the image-caption joint space. By contrasting with human-written captions and image-mismatched captions, the caption generator effectively exploits the inherent characteristics of human languages, and generates more discriminative captions. We show that our proposed network is capable of producing accurate and diverse captions across images.

北京阿比特科技有限公司