While human beings have a right to digital experiences that support, rather than diminish, their psychological wellbeing, technology designers lack research-based practices for ensuring psychological needs are met. To help address this gap, we draw on findings from over 30 years of research in psychology (specifically, self-determination theory) that has identified contextual factors shown to support psychological wellbeing. We translate these findings into a list of 15 heuristics and 30 design strategies to provide technology makers with theoretically grounded, research-based, and actionable ways to support wellbeing in user experience.
Introducing new technologies such as messaging platforms, and the chatbots attached to them, in higher education, is rapidly growing. This introduction entails a careful consideration of the potential opportunities and/or challenges of adopting these tools. Hence, a thorough examination of the teachers' experiences in this discipline can shed light on the effective ways of enhancing students' learning and boosting their progress. In this contribution, we have surveyed the opinions of tertiary education teachers based in Spain (mainly) and Spanish-speaking countries. The focus of these surveys is to collect teachers' feedback about their opinions regarding the introduction of the messaging platforms and chatbots in their classes, understand their needs and to gather information about the various educational use cases where these tools are valuable. In addition, an analysis of how and when teachers' opinions towards the use of these tools can vary across gender, experience, and their discipline of specialisation is presented. The key findings of this study highlight the factors that can contribute to the advancement of the adoption of messaging platforms and chatbots in higher education institutions to achieve the desired learning outcomes.
Music listening in today's digital spaces is highly characterized by the availability of huge music catalogues, accessible by people all over the world. In this scenario, recommender systems are designed to guide listeners in finding tracks and artists that best fit their requests, having therefore the power to influence the diversity of the music they listen to. Albeit several works have proposed new techniques for developing diversity-aware recommendations, little is known about how people perceive diversity while interacting with music recommendations. In this study, we interview several listeners about the role that diversity plays in their listening experience, trying to get a better understanding of how they interact with music recommendations. We recruit the listeners among the participants of a previous quantitative study, where they were confronted with the notion of diversity when asked to identify, from a series of electronic music lists, the most diverse ones according to their beliefs. As a follow-up, in this qualitative study we carry out semi-structured interviews to understand how listeners may assess the diversity of a music list and to investigate their experiences with music recommendation diversity. We report here our main findings on 1) what can influence the diversity assessment of tracks and artists' music lists, and 2) which factors can characterize listeners' interaction with music recommendation diversity.
Emotion recognition in smart eyewear devices is highly valuable but challenging. One key limitation of previous works is that the expression-related information like facial or eye images is considered as the only emotional evidence. However, emotional status is not isolated; it is tightly associated with people's visual perceptions, especially those sentimental ones. However, little work has examined such associations to better illustrate the cause of different emotions. In this paper, we study the emotionship analysis problem in eyewear systems, an ambitious task that requires not only classifying the user's emotions but also semantically understanding the potential cause of such emotions. To this end, we devise EMOShip, a deep-learning-based eyewear system that can automatically detect the wearer's emotional status and simultaneously analyze its associations with semantic-level visual perceptions. Experimental studies with 20 participants demonstrate that, thanks to the emotionship awareness, EMOShip not only achieves superior emotion recognition accuracy over existing methods (80.2% vs. 69.4%), but also provides a valuable understanding of the cause of emotions. Pilot studies with 20 participants further motivate the potential use of EMOShip to empower emotion-aware applications, such as emotionship self-reflection and emotionship life-logging.
The introduction of online marketplace platforms has led to the advent of new forms of flexible, on-demand (or 'gig') work. Yet, most prior research concerning the experience of gig workers examines delivery or crowdsourcing platforms, while the experience of the large numbers of workers who undertake educational labour in the form of tutoring gigs remains understudied. To address this, we use a computational grounded theory approach to analyse tutors' discussions on Reddit. This approach consists of three phases including data exploration, modelling and human-centred interpretation. We use both validation and human evaluation to increase the trustworthiness and reliability of the computational methods. This paper is a work in progress and reports on the first of the three phases of this approach.
The future of innovation processes is anticipated to be more data-driven and empowered by the ubiquitous digitalization, increasing data accessibility and rapid advances in machine learning, artificial intelligence, and computing technologies. While the data-driven innovation (DDI) paradigm is emerging, it has yet been formally defined and theorized and often confused with several other data-related phenomena. This paper defines and crystalizes "data-driven innovation" as a formal innovation process paradigm, dissects its value creation, and distinguishes it from data-driven optimization (DDO), data-based innovation (DBI), and the traditional innovation processes that purely rely on human intelligence. With real-world examples and theoretical framing, I elucidate what DDI entails and how it addresses uncertainty and enhance creativity in the innovation process and present a process-based taxonomy of different data-driven innovation approaches. On this basis, I recommend the strategies and actions for innovators, companies, R&D organizations, and governments to enact data-driven innovation.
Society is showing signs of strong ideological polarization. When pushed to seek perspectives different from their own, people often reject diverse ideas or find them unfathomable. Work has shown that framing controversial issues using the values of the audience can improve understanding of opposing views. In this paper, we present our work designing systems for addressing ideological division through educating U.S. news consumers to engage using a framework of fundamental human values known as Moral Foundations. We design and implement a series of new features that encourage users to challenge their understanding of opposing views, including annotation of moral frames in news articles, discussion of those frames via inline comments, and recommendations based on relevant moral frames. We describe two versions of features -- the first covering a suite of ways to interact with moral framing in news, and the second tailored towards collaborative annotation and discussion. We conduct a field evaluation of each design iteration with 71 participants in total over a period of 6-8 days, finding evidence suggesting users learned to re-frame their discourse in moral values of the opposing side. Our work provides several design considerations for building systems to engage with moral framing.
Understanding what online users may pay attention to is key to content recommendation and search services. These services will benefit from a highly structured and web-scale ontology of entities, concepts, events, topics and categories. While existing knowledge bases and taxonomies embody a large volume of entities and categories, we argue that they fail to discover properly grained concepts, events and topics in the language style of online population. Neither is a logically structured ontology maintained among these notions. In this paper, we present GIANT, a mechanism to construct a user-centered, web-scale, structured ontology, containing a large number of natural language phrases conforming to user attentions at various granularities, mined from a vast volume of web documents and search click graphs. Various types of edges are also constructed to maintain a hierarchy in the ontology. We present our graph-neural-network-based techniques used in GIANT, and evaluate the proposed methods as compared to a variety of baselines. GIANT has produced the Attention Ontology, which has been deployed in various Tencent applications involving over a billion users. Online A/B testing performed on Tencent QQ Browser shows that Attention Ontology can significantly improve click-through rates in news recommendation.
Concepts embody the knowledge of the world and facilitate the cognitive processes of human beings. Mining concepts from web documents and constructing the corresponding taxonomy are core research problems in text understanding and support many downstream tasks such as query analysis, knowledge base construction, recommendation, and search. However, we argue that most prior studies extract formal and overly general concepts from Wikipedia or static web pages, which are not representing the user perspective. In this paper, we describe our experience of implementing and deploying ConcepT in Tencent QQ Browser. It discovers user-centered concepts at the right granularity conforming to user interests, by mining a large amount of user queries and interactive search click logs. The extracted concepts have the proper granularity, are consistent with user language styles and are dynamically updated. We further present our techniques to tag documents with user-centered concepts and to construct a topic-concept-instance taxonomy, which has helped to improve search as well as news feeds recommendation in Tencent QQ Browser. We performed extensive offline evaluation to demonstrate that our approach could extract concepts of higher quality compared to several other existing methods. Our system has been deployed in Tencent QQ Browser. Results from online A/B testing involving a large number of real users suggest that the Impression Efficiency of feeds users increased by 6.01% after incorporating the user-centered concepts into the recommendation framework of Tencent QQ Browser.
As the first step to model emotional state of a person, we build sentiment analysis models with existing deep neural network algorithms and compare the models with psychological measurements to enlighten the relationship. In the experiments, we first examined psychological state of 64 participants and asked them to summarize the story of a book, Chronicle of a Death Foretold (Marquez, 1981). Secondly, we trained models using crawled 365,802 movie review data; then we evaluated participants' summaries using the pretrained model as a concept of transfer learning. With the background that emotion affects on memories, we investigated the relationship between the evaluation score of the summaries from computational models and the examined psychological measurements. The result shows that although CNN performed the best among other deep neural network algorithms (LSTM, GRU), its results are not related to the psychological state. Rather, GRU shows more explainable results depending on the psychological state. The contribution of this paper can be summarized as follows: (1) we enlighten the relationship between computational models and psychological measurements. (2) we suggest this framework as objective methods to evaluate the emotion; the real sentiment analysis of a person.
Conversational systems have come a long way since their inception in the 1960s. After decades of research and development, we've seen progress from Eliza and Parry in the 60's and 70's, to task-completion systems as in the DARPA Communicator program in the 2000s, to intelligent personal assistants such as Siri in the 2010s, to today's social chatbots like XiaoIce. Social chatbots' appeal lies not only in their ability to respond to users' diverse requests, but also in being able to establish an emotional connection with users. The latter is done by satisfying users' need for communication, affection, as well as social belonging. To further the advancement and adoption of social chatbots, their design must focus on user engagement and take both intellectual quotient (IQ) and emotional quotient (EQ) into account. Users should want to engage with a social chatbot; as such, we define the success metric for social chatbots as conversation-turns per session (CPS). Using XiaoIce as an illustrative example, we discuss key technologies in building social chatbots from core chat to visual awareness to skills. We also show how XiaoIce can dynamically recognize emotion and engage the user throughout long conversations with appropriate interpersonal responses. As we become the first generation of humans ever living with AI, we have a responsibility to design social chatbots to be both useful and empathetic, so they will become ubiquitous and help society as a whole.