亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Labelling data is a major practical bottleneck in training and testing classifiers. Given a collection of unlabelled data points, we address how to select which subset to label to best estimate test metrics such as accuracy, $F_1$ score or micro/macro $F_1$. We consider two sampling based approaches, namely the well-known Importance Sampling and we introduce a novel application of Poisson Sampling. For both approaches we derive the minimal error sampling distributions and how to approximate and use them to form estimators and confidence intervals. We show that Poisson Sampling outperforms Importance Sampling both theoretically and experimentally.

相關內容

Assessing goodness of fit to a given distribution plays an important role in computational statistics. The Probability integral transformation (PIT) can be used to convert the question of whether a given sample originates from a reference distribution into a problem of testing for uniformity. We present new simulation and optimization based methods to obtain simultaneous confidence bands for the whole empirical cumulative distribution function (ECDF) of the PIT values under the assumption of uniformity. Simultaneous confidence bands correspond to such confidence intervals at each point that jointly satisfy a desired coverage. These methods can also be applied in cases where the reference distribution is represented only by a finite sample. The confidence bands provide an intuitive ECDF-based graphical test for uniformity, which also provides useful information on the quality of the discrepancy. We further extend the simulation and optimization methods to determine simultaneous confidence bands for testing whether multiple samples come from the same underlying distribution. This multiple sample comparison test is especially useful in Markov chain Monte Carlo convergence diagnostics. We provide numerical experiments to assess the properties of the tests using both simulated and real world data and give recommendations on their practical application in computational statistics workflows.

Graphical models are useful tools for describing structured high-dimensional probability distributions. Development of efficient algorithms for learning graphical models with least amount of data remains an active research topic. Reconstruction of graphical models that describe the statistics of discrete variables is a particularly challenging problem, for which the maximum likelihood approach is intractable. In this work, we provide the first sample-efficient method based on the Interaction Screening framework that allows one to provably learn fully general discrete factor models with node-specific discrete alphabets and multi-body interactions, specified in an arbitrary basis. We identify a single condition related to model parametrization that leads to rigorous guarantees on the recovery of model structure and parameters in any error norm, and is readily verifiable for a large class of models. Importantly, our bounds make explicit distinction between parameters that are proper to the model and priors used as an input to the algorithm. Finally, we show that the Interaction Screening framework includes all models previously considered in the literature as special cases, and for which our analysis shows a systematic improvement in sample complexity.

Utility-Based Shortfall Risk (UBSR) is a risk metric that is increasingly popular in financial applications, owing to certain desirable properties that it enjoys. We consider the problem of estimating UBSR in a recursive setting, where samples from the underlying loss distribution are available one-at-a-time. We cast the UBSR estimation problem as a root finding problem, and propose stochastic approximation-based estimations schemes. We derive non-asymptotic bounds on the estimation error in the number of samples. We also consider the problem of UBSR optimization within a parameterized class of random variables. We propose a stochastic gradient descent based algorithm for UBSR optimization, and derive non-asymptotic bounds on its convergence.

This paper introduces the R package drpop to flexibly estimate total population size from incomplete lists. Total population estimation, also called capture-recapture, is an important problem in many biological and social sciences. A typical dataset consists of incomplete lists of individuals from the population of interest along with some covariate information. The goal is to estimate the number of unobserved individuals and equivalently, the total population size. drpop flexibly models heterogeneity using the covariate information, under the assumption that two lists are conditionally independent given covariates. This can be a much weaker assumption than full marginal independence often required by classical methods. Moreover, it can incorporate complex and high dimensional covariates, and does not require parametric models like other popular methods. In particular, our estimator is doubly robust and has fast convergence rates even under flexible non-parametric set-ups. drpop provides the user with the flexibility to choose the model for estimation of intermediate parameters and returns the estimated population size, confidence interval and some other related quantities. In this paper, we illustrate the applications of drpop in different scenarios and we also present some performance summaries.

We consider off-policy evaluation (OPE) in Partially Observable Markov Decision Processes (POMDPs), where the evaluation policy depends only on observable variables and the behavior policy depends on unobservable latent variables. Existing works either assume no unmeasured confounders, or focus on settings where both the observation and the state spaces are tabular. As such, these methods suffer from either a large bias in the presence of unmeasured confounders, or a large variance in settings with continuous or large observation/state spaces. In this work, we first propose novel identification methods for OPE in POMDPs with latent confounders, by introducing bridge functions that link the target policy's value and the observed data distribution. In fully-observable MDPs, these bridge functions reduce to the familiar value functions and marginal density ratios between the evaluation and the behavior policies. We next propose minimax estimation methods for learning these bridge functions. Our proposal permits general function approximation and is thus applicable to settings with continuous or large observation/state spaces. Finally, we construct three estimators based on these estimated bridge functions, corresponding to a value function-based estimator, a marginalized importance sampling estimator, and a doubly-robust estimator. Their nonasymptotic and asymptotic properties are investigated in detail.

A common approach to synthetic data is to sample from a fitted model. We show that under general assumptions, this approach results in a sample with inefficient estimators and whose joint distribution is inconsistent with the true distribution. Motivated by this, we propose a general method of producing synthetic data, which is widely applicable for parametric models, has asymptotically efficient summary statistics, and is both easily implemented and highly computationally efficient. Our approach allows for the construction of both partially synthetic datasets, which preserve certain summary statistics, as well as fully synthetic data which satisfy the strong guarantee of differential privacy (DP), both with the same asymptotic guarantees. We also provide theoretical and empirical evidence that the distribution from our procedure converges to the true distribution. Besides our focus on synthetic data, our procedure can also be used to perform approximate hypothesis tests in the presence of intractable likelihood functions.

Bayesian optimization (BO) is a sample-efficient approach to optimizing costly-to-evaluate black-box functions. Most BO methods ignore how evaluation costs may vary over the optimization domain. However, these costs can be highly heterogeneous and are often unknown in advance. This occurs in many practical settings, such as hyperparameter tuning of machine learning algorithms or physics-based simulation optimization. Moreover, those few existing methods that acknowledge cost heterogeneity do not naturally accommodate a budget constraint on the total evaluation cost. This combination of unknown costs and a budget constraint introduces a new dimension to the exploration-exploitation trade-off, where learning about the cost incurs the cost itself. Existing methods do not reason about the various trade-offs of this problem in a principled way, leading often to poor performance. We formalize this claim by proving that the expected improvement and the expected improvement per unit of cost, arguably the two most widely used acquisition functions in practice, can be arbitrarily inferior with respect to the optimal non-myopic policy. To overcome the shortcomings of existing approaches, we propose the budgeted multi-step expected improvement, a non-myopic acquisition function that generalizes classical expected improvement to the setting of heterogeneous and unknown evaluation costs. Finally, we show that our acquisition function outperforms existing methods in a variety of synthetic and real problems.

Implicit probabilistic models are models defined naturally in terms of a sampling procedure and often induces a likelihood function that cannot be expressed explicitly. We develop a simple method for estimating parameters in implicit models that does not require knowledge of the form of the likelihood function or any derived quantities, but can be shown to be equivalent to maximizing likelihood under some conditions. Our result holds in the non-asymptotic parametric setting, where both the capacity of the model and the number of data examples are finite. We also demonstrate encouraging experimental results.

Importance sampling is one of the most widely used variance reduction strategies in Monte Carlo rendering. In this paper, we propose a novel importance sampling technique that uses a neural network to learn how to sample from a desired density represented by a set of samples. Our approach considers an existing Monte Carlo rendering algorithm as a black box. During a scene-dependent training phase, we learn to generate samples with a desired density in the primary sample space of the rendering algorithm using maximum likelihood estimation. We leverage a recent neural network architecture that was designed to represent real-valued non-volume preserving ('Real NVP') transformations in high dimensional spaces. We use Real NVP to non-linearly warp primary sample space and obtain desired densities. In addition, Real NVP efficiently computes the determinant of the Jacobian of the warp, which is required to implement the change of integration variables implied by the warp. A main advantage of our approach is that it is agnostic of underlying light transport effects, and can be combined with many existing rendering techniques by treating them as a black box. We show that our approach leads to effective variance reduction in several practical scenarios.

Multilingual topic models enable document analysis across languages through coherent multilingual summaries of the data. However, there is no standard and effective metric to evaluate the quality of multilingual topics. We introduce a new intrinsic evaluation of multilingual topic models that correlates well with human judgments of multilingual topic coherence as well as performance in downstream applications. Importantly, we also study evaluation for low-resource languages. Because standard metrics fail to accurately measure topic quality when robust external resources are unavailable, we propose an adaptation model that improves the accuracy and reliability of these metrics in low-resource settings.

北京阿比特科技有限公司