亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Approximating Martingale Process (AMP) is proven to be effective for variance reduction in reinforcement learning (RL) in specific cases such as Multiclass Queueing Networks. However, in the already proven cases, the state space is relatively small and all possible state transitions can be iterated through. In this paper, we consider systems in which state space is large and have uncertainties when considering state transitions, thus making AMP a generalized variance-reduction method in RL. Specifically, we will investigate the application of AMP in ride-hailing systems like Uber, where Proximal Policy Optimization (PPO) is incorporated to optimize the policy of matching drivers and customers.

相關內容

Various methods for Multi-Agent Reinforcement Learning (MARL) have been developed with the assumption that agents' policies are based on accurate state information. However, policies learned through Deep Reinforcement Learning (DRL) are susceptible to adversarial state perturbation attacks. In this work, we propose a State-Adversarial Markov Game (SAMG) and make the first attempt to investigate the fundamental properties of MARL under state uncertainties. Our analysis shows that the commonly used solution concepts of optimal agent policy and robust Nash equilibrium do not always exist in SAMGs. To circumvent this difficulty, we consider a new solution concept called robust agent policy, where agents aim to maximize the worst-case expected state value. We prove the existence of robust agent policy for finite state and finite action SAMGs. Additionally, we propose a Robust Multi-Agent Adversarial Actor-Critic (RMA3C) algorithm to learn robust policies for MARL agents under state uncertainties. Our experiments demonstrate that our algorithm outperforms existing methods when faced with state perturbations and greatly improves the robustness of MARL policies. Our code is public on //songyanghan.github.io/what_is_solution/.

From natural language processing to genome sequencing, large-scale machine learning models are bringing advances to a broad range of fields. Many of these models are too large to be trained on a single machine, and instead must be distributed across multiple devices. This has motivated the research of new compute and network systems capable of handling such tasks. In particular, recent work has focused on developing management schemes which decide how to allocate distributed resources such that some overall objective, such as minimising the job completion time (JCT), is optimised. However, such studies omit explicit consideration of how much a job should be distributed, usually assuming that maximum distribution is desirable. In this work, we show that maximum parallelisation is sub-optimal in relation to user-critical metrics such as throughput and blocking rate. To address this, we propose PAC-ML (partitioning for asynchronous computing with machine learning). PAC-ML leverages a graph neural network and reinforcement learning to learn how much to partition computation graphs such that the number of jobs which meet arbitrary user-defined JCT requirements is maximised. In experiments with five real deep learning computation graphs on a recently proposed optical architecture across four user-defined JCT requirement distributions, we demonstrate PAC-ML achieving up to 56.2% lower blocking rates in dynamic job arrival settings than the canonical maximum parallelisation strategy used by most prior works.

Robustness and safety are critical for the trustworthy deployment of deep reinforcement learning in real-world decision making applications. In particular, we require algorithms that can guarantee robust, safe performance in the presence of general environment disturbances, while making limited assumptions on the data collection process during training. In this work, we propose a safe reinforcement learning framework with robustness guarantees through the use of an optimal transport cost uncertainty set. We provide an efficient, theoretically supported implementation based on Optimal Transport Perturbations, which can be applied in a completely offline fashion using only data collected in a nominal training environment. We demonstrate the robust, safe performance of our approach on a variety of continuous control tasks with safety constraints in the Real-World Reinforcement Learning Suite.

The fifth generation (5G) of wireless networks is set out to meet the stringent requirements of vehicular use cases. Edge computing resources can aid in this direction by moving processing closer to end-users, reducing latency. However, given the stochastic nature of traffic loads and availability of physical resources, appropriate auto-scaling mechanisms need to be employed to support cost-efficient and performant services. To this end, we employ Deep Reinforcement Learning (DRL) for vertical scaling in Edge computing to support vehicular-to-network communications. We address the problem using Deep Deterministic Policy Gradient (DDPG). As DDPG is a model-free off-policy algorithm for learning continuous actions, we introduce a discretization approach to support discrete scaling actions. Thus we address scalability problems inherent to high-dimensional discrete action spaces. Employing a real-world vehicular trace data set, we show that DDPG outperforms existing solutions, reducing (at minimum) the average number of active CPUs by 23% while increasing the long-term reward by 24%.

Many instances of similar or almost-identical industrial machines or tools are often deployed at once, or in quick succession. For instance, a particular model of air compressor may be installed at hundreds of customers. Because these tools perform distinct but highly similar tasks, it is interesting to be able to quickly produce a high-quality controller for machine $N+1$ given the controllers already produced for machines $1..N$. This is even more important when the controllers are learned through Reinforcement Learning, as training takes time, energy and other resources. In this paper, we apply Policy Intersection, a Policy Shaping method, to help a Reinforcement Learning agent learn to solve a new variant of a compressors control problem faster, by transferring knowledge from several previously learned controllers. We show that our approach outperforms loading an old controller, and significantly improves performance in the long run.

Directed Exploration is a crucial challenge in reinforcement learning (RL), especially when rewards are sparse. Information-directed sampling (IDS), which optimizes the information ratio, seeks to do so by augmenting regret with information gain. However, estimating information gain is computationally intractable or relies on restrictive assumptions which prohibit its use in many practical instances. In this work, we posit an alternative exploration incentive in terms of the integral probability metric (IPM) between a current estimate of the transition model and the unknown optimal, which under suitable conditions, can be computed in closed form with the kernelized Stein discrepancy (KSD). Based on KSD, we develop a novel algorithm STEERING: \textbf{STE}in information dir\textbf{E}cted exploration for model-based \textbf{R}einforcement Learn\textbf{ING}. To enable its derivation, we develop fundamentally new variants of KSD for discrete conditional distributions. We further establish that STEERING archives sublinear Bayesian regret, improving upon prior learning rates of information-augmented MBRL, IDS included. Experimentally, we show that the proposed algorithm is computationally affordable and outperforms several prior approaches.

Among the reasons hindering reinforcement learning (RL) applications to real-world problems, two factors are critical: limited data and the mismatch between the testing environment (real environment in which the policy is deployed) and the training environment (e.g., a simulator). This paper attempts to address these issues simultaneously with distributionally robust offline RL, where we learn a distributionally robust policy using historical data obtained from the source environment by optimizing against a worst-case perturbation thereof. In particular, we move beyond tabular settings and consider linear function approximation. More specifically, we consider two settings, one where the dataset is well-explored and the other where the dataset has sufficient coverage of the optimal policy. We propose two algorithms~-- one for each of the two settings~-- that achieve error bounds $\tilde{O}(d^{1/2}/N^{1/2})$ and $\tilde{O}(d^{3/2}/N^{1/2})$ respectively, where $d$ is the dimension in the linear function approximation and $N$ is the number of trajectories in the dataset. To the best of our knowledge, they provide the first non-asymptotic results of the sample complexity in this setting. Diverse experiments are conducted to demonstrate our theoretical findings, showing the superiority of our algorithm against the non-robust one.

Constrained Reinforcement Learning has been employed to enforce safety constraints on policy through the use of expected cost constraints. The key challenge is in handling expected cost accumulated using the policy and not just in a single step. Existing methods have developed innovative ways of converting this cost constraint over entire policy to constraints over local decisions (at each time step). While such approaches have provided good solutions with regards to objective, they can either be overly aggressive or conservative with respect to costs. This is owing to use of estimates for "future" or "backward" costs in local cost constraints. To that end, we provide an equivalent unconstrained formulation to constrained RL that has an augmented state space and reward penalties. This intuitive formulation is general and has interesting theoretical properties. More importantly, this provides a new paradigm for solving constrained RL problems effectively. As we show in our experimental results, we are able to outperform leading approaches on multiple benchmark problems from literature.

Learning a predictive model of the mean return, or value function, plays a critical role in many reinforcement learning algorithms. Distributional reinforcement learning (DRL) methods instead model the value distribution, which has been shown to improve performance in many settings. In this paper, we model the value distribution as approximately normal using the Markov Chain central limit theorem. We analytically compute quantile bars to provide a new DRL target that is informed by the decrease in standard deviation that occurs over the course of an episode. In addition, we propose a policy update strategy based on uncertainty as measured by structural characteristics of the value distribution not present in the standard value function. The approach we outline is compatible with many DRL structures. We use two representative on-policy algorithms, PPO and TRPO, as testbeds and show that our methods produce performance improvements in continuous control tasks.

This paper aims to mitigate straggler effects in synchronous distributed learning for multi-agent reinforcement learning (MARL) problems. Stragglers arise frequently in a distributed learning system, due to the existence of various system disturbances such as slow-downs or failures of compute nodes and communication bottlenecks. To resolve this issue, we propose a coded distributed learning framework, which speeds up the training of MARL algorithms in the presence of stragglers, while maintaining the same accuracy as the centralized approach. As an illustration, a coded distributed version of the multi-agent deep deterministic policy gradient(MADDPG) algorithm is developed and evaluated. Different coding schemes, including maximum distance separable (MDS)code, random sparse code, replication-based code, and regular low density parity check (LDPC) code are also investigated. Simulations in several multi-robot problems demonstrate the promising performance of the proposed framework.

北京阿比特科技有限公司