亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This study builds on a recent paper by Lai et al [Appl. Comput. Harmon. Anal., 2018] in which a novel boundary integral formulation is presented for scalar wave scattering analysis in two-dimensional layered and half-spaces. The seminal paper proposes a hybrid integral representation that combines the Sommerfeld integral and layer potential to efficiently deal with the boundaries of infinite length. In this work, we modify the integral formulation to eliminate the fictitious eigenvalues by employing Burton-Miller's approach. We also discuss reasonable parameter settings for the hybrid integral equation to ensure efficient and accurate numerical solutions. Furthermore, we extend the modified formulation for the scattering from a cavity in a half-space whose boundary is locally perturbed. To address the cavity scattering, we introduce a virtual boundary enclosing the cavity and couple the integral equation on it with the hybrid equation. The effectiveness of the proposed method is demonstrated through numerical examples.

相關內容

Integration:Integration, the VLSI Journal。 Explanation:集(ji)成,VLSI雜志(zhi)。 Publisher:Elsevier。 SIT:

Forecasting water content dynamics in heterogeneous porous media has significant interest in hydrological applications; in particular, the treatment of infiltration when in presence of cracks and fractures can be accomplished resorting to peridynamic theory, which allows a proper modeling of non localities in space. In this framework, we make use of Chebyshev transform on the diffusive component of the equation and then we integrate forward in time using an explicit method. We prove that the proposed spectral numerical scheme provides a solution converging to the unique solution in some appropriate Sobolev space. We finally exemplify on several different soils, also considering a sink term representing the root water uptake.

Mixtures of factor analysers (MFA) models represent a popular tool for finding structure in data, particularly high-dimensional data. While in most applications the number of clusters, and especially the number of latent factors within clusters, is mostly fixed in advance, in the recent literature models with automatic inference on both the number of clusters and latent factors have been introduced. The automatic inference is usually done by assigning a nonparametric prior and allowing the number of clusters and factors to potentially go to infinity. The MCMC estimation is performed via an adaptive algorithm, in which the parameters associated with the redundant factors are discarded as the chain moves. While this approach has clear advantages, it also bears some significant drawbacks. Running a separate factor-analytical model for each cluster involves matrices of changing dimensions, which can make the model and programming somewhat cumbersome. In addition, discarding the parameters associated with the redundant factors could lead to a bias in estimating cluster covariance matrices. At last, identification remains problematic for infinite factor models. The current work contributes to the MFA literature by providing for the automatic inference on the number of clusters and the number of cluster-specific factors while keeping both cluster and factor dimensions finite. This allows us to avoid many of the aforementioned drawbacks of the infinite models. For the automatic inference on the cluster structure, we employ the dynamic mixture of finite mixtures (MFM) model. Automatic inference on cluster-specific factors is performed by assigning an exchangeable shrinkage process (ESP) prior to the columns of the factor loading matrices. The performance of the model is demonstrated on several benchmark data sets as well as real data applications.

Blockchain (BC) and Computer Vision (CV) are the two emerging fields with the potential to transform various sectors.The ability of BC can help in offering decentralized and secure data storage, while CV allows machines to learn and understand visual data. This integration of the two technologies holds massive promise for developing innovative applications that can provide solutions to the challenges in various sectors such as supply chain management, healthcare, smart cities, and defense. This review explores a comprehensive analysis of the integration of BC and CV by examining their combination and potential applications. It also provides a detailed analysis of the fundamental concepts of both technologies, highlighting their strengths and limitations. This paper also explores current research efforts that make use of the benefits offered by this combination. The effort includes how BC can be used as an added layer of security in CV systems and also ensure data integrity, enabling decentralized image and video analytics using BC. The challenges and open issues associated with this integration are also identified, and appropriate potential future directions are also proposed.

Online polarization research currently focuses on studying single-issue opinion distributions or computing distance metrics of interaction network structures. Limited data availability often restricts studies to positive interaction data, which can misrepresent the reality of a discussion. We introduce a novel framework that aims at combining these three aspects, content and interactions, as well as their nature (positive or negative), while challenging the prevailing notion of polarization as an umbrella term for all forms of online conflict or opposing opinions. In our approach, built on the concepts of cleavage structures and structural balance of signed social networks, we factorize polarization into two distinct metrics: Antagonism and Alignment. Antagonism quantifies hostility in online discussions, based on the reactions of users to content. Alignment uses signed structural information encoded in long-term user-user relations on the platform to describe how well user interactions fit the global and/or traditional sides of discussion. We can analyse the change of these metrics through time, localizing both relevant trends but also sudden changes that can be mapped to specific contexts or events. We apply our methods to two distinct platforms: Birdwatch, a US crowd-based fact-checking extension of Twitter, and DerStandard, an Austrian online newspaper with discussion forums. In these two use cases, we find that our framework is capable of describing the global status of the groups of users (identification of cleavages) while also providing relevant findings on specific issues or in specific time frames. Furthermore, we show that our four metrics describe distinct phenomena, emphasizing their independent consideration for unpacking polarization complexities.

For predictive modeling relying on Bayesian inversion, fully independent, or ``mean-field'', Gaussian distributions are often used as approximate probability density functions in variational inference since the number of variational parameters is twice the number of unknown model parameters. The resulting diagonal covariance structure coupled with unimodal behavior can be too restrictive when dealing with highly non-Gaussian behavior, including multimodality. High-fidelity surrogate posteriors in the form of Gaussian mixtures can capture any distribution to an arbitrary degree of accuracy while maintaining some analytical tractability. Variational inference with Gaussian mixtures with full-covariance structures suffers from a quadratic growth in variational parameters with the number of model parameters. Coupled with the existence of multiple local minima due to nonconvex trends in the loss functions often associated with variational inference, these challenges motivate the need for robust initialization procedures to improve the performance and scalability of variational inference with mixture models. In this work, we propose a method for constructing an initial Gaussian mixture model approximation that can be used to warm-start the iterative solvers for variational inference. The procedure begins with an optimization stage in model parameter space in which local gradient-based optimization, globalized through multistart, is used to determine a set of local maxima, which we take to approximate the mixture component centers. Around each mode, a local Gaussian approximation is constructed via the Laplace method. Finally, the mixture weights are determined through constrained least squares regression. Robustness and scalability are demonstrated using synthetic tests. The methodology is applied to an inversion problem in structural dynamics involving unknown viscous damping coefficients.

Conventionally, piecewise polynomial basis functions (PBFs) are used in the boundary elements method (BEM) to approximate unknown functions. Since, smooth radial basis functions (RBFs) are more stable and accurate than the PBFs for two and three dimensional domains, the unknown functions are approximated by the RBFs in this paper. Therefore, a new formulation of BEM, called radial BEM, is proposed. There are some singular boundary integrals in BEM which mostly are calculated analytically. Analytical schemes are only applicable for PBFs defined on straight boundary element, and become more complicated for polynomials of higher degree. To overcome this difficulty, this paper proposes a distribution for boundary source points so that the boundary integrals can be calculated by Gaussian quadrature rule (GQR) with high precision. Using advantages of the proposed approach, boundary integrals of the radial BEM are calculated, easily and precisely. Several numerical examples are presented to show efficiency of the radial BEM versus standard BEM for solving partial differential equations (PDEs).

The recently introduced independent fluctuating two-ray (IFTR) fading model, consisting of two specular components fluctuating independently plus a diffuse component, has proven to provide an excellent fit to different wireless environments, including the millimeter-wave band. However, the original formulations of the probability density function (PDF) and cumulative distribution function (CDF) of this model are not applicable to all possible values of its defining parameters, and are given in terms of multifold generalized hypergeometric functions, which prevents their widespread use for the derivation of performance metric expressions. In this paper we present a new formulation of the IFTR model as a countable mixture of Gamma distributions which greatly facilitates the performance evaluation for this model in terms of the metrics already known for the much simpler and widely used Nakagami-m fading. Additionally, a closed-form expression is presented for the generalized moment generating function (GMGF), which permits to readily obtain all the moments of the distribution of the model, as well as several relevant performance metrics. Based on these new derivations, the IFTR model is evaluated for the average channel capacity, the outage probability with and without co-channel interference, and the bit error rate (BER), which are verified by Monte Carlo simulations.

Our goal is to develop theory and algorithms for establishing fundamental limits on performance imposed by a robot's sensors for a given task. In order to achieve this, we define a quantity that captures the amount of task-relevant information provided by a sensor. Using a novel version of the generalized Fano inequality from information theory, we demonstrate that this quantity provides an upper bound on the highest achievable expected reward for one-step decision making tasks. We then extend this bound to multi-step problems via a dynamic programming approach. We present algorithms for numerically computing the resulting bounds, and demonstrate our approach on three examples: (i) the lava problem from the literature on partially observable Markov decision processes, (ii) an example with continuous state and observation spaces corresponding to a robot catching a freely-falling object, and (iii) obstacle avoidance using a depth sensor with non-Gaussian noise. We demonstrate the ability of our approach to establish strong limits on achievable performance for these problems by comparing our upper bounds with achievable lower bounds (computed by synthesizing or learning concrete control policies).

Multi-agent reinforcement learning (MARL) is a widely used Artificial Intelligence (AI) technique. However, current studies and applications need to address its scalability, non-stationarity, and trustworthiness. This paper aims to review methods and applications and point out research trends and visionary prospects for the next decade. First, this paper summarizes the basic methods and application scenarios of MARL. Second, this paper outlines the corresponding research methods and their limitations on safety, robustness, generalization, and ethical constraints that need to be addressed in the practical applications of MARL. In particular, we believe that trustworthy MARL will become a hot research topic in the next decade. In addition, we suggest that considering human interaction is essential for the practical application of MARL in various societies. Therefore, this paper also analyzes the challenges while MARL is applied to human-machine interaction.

A proper fusion of complex data is of interest to many researchers in diverse fields, including computational statistics, computational geometry, bioinformatics, machine learning, pattern recognition, quality management, engineering, statistics, finance, economics, etc. It plays a crucial role in: synthetic description of data processes or whole domains, creation of rule bases for approximate reasoning tasks, reaching consensus and selection of the optimal strategy in decision support systems, imputation of missing values, data deduplication and consolidation, record linkage across heterogeneous databases, and clustering. This open-access research monograph integrates the spread-out results from different domains using the methodology of the well-established classical aggregation framework, introduces researchers and practitioners to Aggregation 2.0, as well as points out the challenges and interesting directions for further research.

北京阿比特科技有限公司