The recently introduced independent fluctuating two-ray (IFTR) fading model, consisting of two specular components fluctuating independently plus a diffuse component, has proven to provide an excellent fit to different wireless environments, including the millimeter-wave band. However, the original formulations of the probability density function (PDF) and cumulative distribution function (CDF) of this model are not applicable to all possible values of its defining parameters, and are given in terms of multifold generalized hypergeometric functions, which prevents their widespread use for the derivation of performance metric expressions. In this paper we present a new formulation of the IFTR model as a countable mixture of Gamma distributions which greatly facilitates the performance evaluation for this model in terms of the metrics already known for the much simpler and widely used Nakagami-m fading. Additionally, a closed-form expression is presented for the generalized moment generating function (GMGF), which permits to readily obtain all the moments of the distribution of the model, as well as several relevant performance metrics. Based on these new derivations, the IFTR model is evaluated for the average channel capacity, the outage probability with and without co-channel interference, and the bit error rate (BER), which are verified by Monte Carlo simulations.
We prove precise rates of convergence for monotone approximation schemes of fractional and nonlocal Hamilton-Jacobi-Bellman (HJB) equations. We consider diffusion corrected difference-quadrature schemes from the literature and new approximations based on powers of discrete Laplacians, approximations which are (formally) fractional order and 2nd order methods. It is well-known in numerical analysis that convergence rates depend on the regularity of solutions, and here we consider cases with varying solution regularity: (i) Strongly degenerate problems with Lipschitz solutions, and (ii) weakly non-degenerate problems where we show that solutions have bounded fractional derivatives of order between 1 and 2. Our main results are optimal error estimates with convergence rates that capture precisely both the fractional order of the schemes and the fractional regularity of the solutions. For strongly degenerate equations, these rates improve earlier results. For weakly non-degenerate problems of order greater than one, the results are new. Here we show improved rates compared to the strongly degenerate case, rates that are always better than 1/2.
In randomized experiments, the classic stable unit treatment value assumption (SUTVA) states that the outcome for one experimental unit does not depend on the treatment assigned to other units. However, the SUTVA assumption is often violated in applications such as online marketplaces and social networks where units interfere with each other. We consider the estimation of the average treatment effect in a network interference model using a mixed randomization design that combines two commonly used experimental methods: Bernoulli randomized design, where treatment is independently assigned for each individual unit, and cluster-based design, where treatment is assigned at an aggregate level. Essentially, a mixed randomization experiment runs these two designs simultaneously, allowing it to better measure the effect of network interference. We propose an unbiased estimator for the average treatment effect under the mixed design and show the variance of the estimator is bounded by $O({d^2}n^{-1}p^{-1})$ where $d$ is the maximum degree of the network, $n$ is the network size, and $p$ is the probability of treatment. We also establish a lower bound of $\Omega(d^{1.5}n^{-1}p^{-1})$ for the variance of any mixed design. For a family of sparse networks characterized by a growth constant $\kappa \leq d$, we improve the upper bound to $O({\kappa^7 d}n^{-1}p^{-1})$. Furthermore, when interference weights on the edges of the network are unknown, we propose a weight-invariant design that achieves a variance bound of $O({d^3}n^{-1}p^{-1})$.
With the help of Generalized Estimating Equations, we identify locally D-optimal crossover designs for generalized linear models. We adopt the variance of parameters of interest as the objective function, which is minimized using constrained optimization to obtain optimal crossover designs. In this case, the traditional general equivalence theorem could not be used directly to check the optimality of obtained designs. In this manuscript, we derive a corresponding general equivalence theorem for crossover designs under generalized linear models.
In Chinese text recognition, to compensate for the insufficient local data and improve the performance of local few-shot character recognition, it is often necessary for one organization to collect a large amount of data from similar organizations. However, due to the natural presence of private information in text data, such as addresses and phone numbers, different organizations are unwilling to share private data. Therefore, it becomes increasingly important to design a privacy-preserving collaborative training framework for the Chinese text recognition task. In this paper, we introduce personalized federated learning (pFL) into the Chinese text recognition task and propose the pFedCR algorithm, which significantly improves the model performance of each client (organization) without sharing private data. Specifically, pFedCR comprises two stages: multiple rounds of global model training stage and the the local personalization stage. During stage 1, an attention mechanism is incorporated into the CRNN model to adapt to various client data distributions. Leveraging inherent character data characteristics, a balanced dataset is created on the server to mitigate character imbalance. In the personalization phase, the global model is fine-tuned for one epoch to create a local model. Parameter averaging between local and global models combines personalized and global feature extraction capabilities. Finally, we fine-tune only the attention layers to enhance its focus on local personalized features. The experimental results on three real-world industrial scenario datasets show that the pFedCR algorithm can improve the performance of local personalized models by about 20\% while also improving their generalization performance on other client data domains. Compared to other state-of-the-art personalized federated learning methods, pFedCR improves performance by 6\% $\sim$ 8\%.
We prove precise rates of convergence for monotone approximation schemes of fractional and nonlocal Hamilton-Jacobi-Bellman (HJB) equations. We consider diffusion corrected difference-quadrature schemes from the literature and new approximations based on powers of discrete Laplacians, approximations which are (formally) fractional order and 2nd order methods. It is well-known in numerical analysis that convergence rates depend on the regularity of solutions, and here we consider cases with varying solution regularity: (i) Strongly degenerate problems with Lipschitz solutions, and (ii) weakly non-degenerate problems where we show that solutions have bounded fractional derivatives of order between 1 and 2. Our main results are optimal error estimates with convergence rates that capture precisely both the fractional order of the schemes and the fractional regularity of the solutions. For strongly degenerate equations, these rates improve earlier results. For weakly non-degenerate problems of order greater than one, the results are new. Here we show improved rates compared to the strongly degenerate case, rates that are always better than 1/2.
This paper presents efficient algorithms, designed to leverage SIMD for performing Montgomery reductions and additions on integers larger than 512 bits. The existing algorithms encounter inefficiencies when parallelized using SIMD due to extensive dependencies in both operations, particularly noticeable in costly operations like ARM's SVE. To mitigate this problem, a novel addition algorithm is introduced that simulates the addition of large integers using a smaller addition, quickly producing the same set of carries. These carries are then utilized to perform parallel additions on large integers. For Montgomery reductions, serial multiplications are replaced with precomputations that can be effectively calculated using SIMD extensions. Experimental evidence demonstrates that these proposed algorithms substantially enhance the performance of state-of-the-art implementations of several post-quantum cryptography algorithms. Notably, they deliver a 30% speed-up from the latest CTIDH implementation, an 11% speed-up from the latest CSIDH implementation in AVX-512 processors, and a 7% speed-up from Microsoft's standard PQCrypto-SIDH for SIKEp503 on A64FX.
Large Language Models (LLMs) have shown excellent generalization capabilities that have led to the development of numerous models. These models propose various new architectures, tweaking existing architectures with refined training strategies, increasing context length, using high-quality training data, and increasing training time to outperform baselines. Analyzing new developments is crucial for identifying changes that enhance training stability and improve generalization in LLMs. This survey paper comprehensively analyses the LLMs architectures and their categorization, training strategies, training datasets, and performance evaluations and discusses future research directions. Moreover, the paper also discusses the basic building blocks and concepts behind LLMs, followed by a complete overview of LLMs, including their important features and functions. Finally, the paper summarizes significant findings from LLM research and consolidates essential architectural and training strategies for developing advanced LLMs. Given the continuous advancements in LLMs, we intend to regularly update this paper by incorporating new sections and featuring the latest LLM models.
Residual networks (ResNets) have displayed impressive results in pattern recognition and, recently, have garnered considerable theoretical interest due to a perceived link with neural ordinary differential equations (neural ODEs). This link relies on the convergence of network weights to a smooth function as the number of layers increases. We investigate the properties of weights trained by stochastic gradient descent and their scaling with network depth through detailed numerical experiments. We observe the existence of scaling regimes markedly different from those assumed in neural ODE literature. Depending on certain features of the network architecture, such as the smoothness of the activation function, one may obtain an alternative ODE limit, a stochastic differential equation or neither of these. These findings cast doubts on the validity of the neural ODE model as an adequate asymptotic description of deep ResNets and point to an alternative class of differential equations as a better description of the deep network limit.
High spectral dimensionality and the shortage of annotations make hyperspectral image (HSI) classification a challenging problem. Recent studies suggest that convolutional neural networks can learn discriminative spatial features, which play a paramount role in HSI interpretation. However, most of these methods ignore the distinctive spectral-spatial characteristic of hyperspectral data. In addition, a large amount of unlabeled data remains an unexploited gold mine for efficient data use. Therefore, we proposed an integration of generative adversarial networks (GANs) and probabilistic graphical models for HSI classification. Specifically, we used a spectral-spatial generator and a discriminator to identify land cover categories of hyperspectral cubes. Moreover, to take advantage of a large amount of unlabeled data, we adopted a conditional random field to refine the preliminary classification results generated by GANs. Experimental results obtained using two commonly studied datasets demonstrate that the proposed framework achieved encouraging classification accuracy using a small number of data for training.
Image segmentation is an important component of many image understanding systems. It aims to group pixels in a spatially and perceptually coherent manner. Typically, these algorithms have a collection of parameters that control the degree of over-segmentation produced. It still remains a challenge to properly select such parameters for human-like perceptual grouping. In this work, we exploit the diversity of segments produced by different choices of parameters. We scan the segmentation parameter space and generate a collection of image segmentation hypotheses (from highly over-segmented to under-segmented). These are fed into a cost minimization framework that produces the final segmentation by selecting segments that: (1) better describe the natural contours of the image, and (2) are more stable and persistent among all the segmentation hypotheses. We compare our algorithm's performance with state-of-the-art algorithms, showing that we can achieve improved results. We also show that our framework is robust to the choice of segmentation kernel that produces the initial set of hypotheses.