亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The implementation of discontinuous functions occurs in many of today's state of the art partial differential equation solvers. In finite element methods this poses an inherent difficulty: there are no quadrature rules readily available, when integrating functions whose discontinuity falls in the interior of the element. Many approaches to this issue have been developed in recent years, among them is the equivalent polynomial technique. This method replaces the discontinuous function with a polynomial, potentially allowing for the integration to occur over the entire domain, rather than integrating over complex subdomains. Although, eliminating the issues involved with discontinuous function integration, the equivalent polynomial tactic introduces its own set of problems. In particular, either adaptivity is required to capture the discontinuity or error is introduced when regularization of the discontinuous function is implemented. In the current work we eliminate both of these issues. The results of this work provide exact algebraic expressions for subdomain and interface polynomial integration, where the interface represents the boundary of the cut domain. We also provide algorithms for the implementation of these expressions for standard finite element shapes in one, two, and three dimensions, along with a hypercube of arbitrary dimension .

相關內容

Integration:Integration, the VLSI Journal。 Explanation:集成(cheng),VLSI雜(za)志。 Publisher:Elsevier。 SIT:

Motivated by recent increased interest in optimization algorithms for non-convex optimization in application to training deep neural networks and other optimization problems in data analysis, we give an overview of recent theoretical results on global performance guarantees of optimization algorithms for non-convex optimization. We start with classical arguments showing that general non-convex problems could not be solved efficiently in a reasonable time. Then we give a list of problems that can be solved efficiently to find the global minimizer by exploiting the structure of the problem as much as it is possible. Another way to deal with non-convexity is to relax the goal from finding the global minimum to finding a stationary point or a local minimum. For this setting, we first present known results for the convergence rates of deterministic first-order methods, which are then followed by a general theoretical analysis of optimal stochastic and randomized gradient schemes, and an overview of the stochastic first-order methods. After that, we discuss quite general classes of non-convex problems, such as minimization of $\alpha$-weakly-quasi-convex functions and functions that satisfy Polyak--Lojasiewicz condition, which still allow obtaining theoretical convergence guarantees of first-order methods. Then we consider higher-order and zeroth-order/derivative-free methods and their convergence rates for non-convex optimization problems.

A tournament graph $T = \left(V, E \right)$ is an oriented complete graph, which can be used to model a round-robin tournament between $n$ players. In this paper, we address the problem of finding a champion of the tournament, also known as Copeland winner, which is a player that wins the highest number of matches. Solving this problem has important implications on several Information Retrieval applications, including Web search, conversational IR, machine translation, question answering, recommender systems, etc. Our goal is to solve the problem by minimizing the number of times we probe the adjacency matrix, i.e., the number of matches played. We prove that any deterministic/randomized algorithm finding a champion with constant success probability requires $\Omega(\ell n)$ comparisons, where $\ell$ is the number of matches lost by the champion. We then present an optimal deterministic algorithm matching this lower bound without knowing $\ell$ and we extend our analysis to three strictly related problems. Lastly, we conduct a comprehensive experimental assessment of the proposed algorithms to speed up a state-of-the-art solution for ranking on public data. Results show that our proposals speed up the retrieval of the champion up to $13\times$ in this scenario.

We propose and analyze volume-preserving parametric finite element methods for surface diffusion, conserved mean curvature flow and an intermediate evolution law in an axisymmetric setting. The weak formulations are presented in terms of the generating curves of the axisymmetric surfaces. The proposed numerical methods are based on piecewise linear parametric finite elements. The constructed fully practical schemes satisfy the conservation of the enclosed volume. In addition, we prove the unconditional stability and consider the distribution of vertices for the discretized schemes. The introduced methods are implicit and the resulting nonlinear systems of equations can be solved very efficiently and accurately via the Newton's iterative method. Numerical results are presented to show the accuracy and efficiency of the introduced schemes for computing the considered axisymmetric geometric flows.

We investigate the complexity of computing the Zariski closure of a finitely generated group of matrices. The Zariski closure was previously shown to be computable by Derksen, Jeandel, and Koiran, but the termination argument for their algorithm appears not to yield any complexity bound. In this paper we follow a different approach and obtain a bound on the degree of the polynomials that define the closure. Our bound shows that the closure can be computed in elementary time. We describe several applications of We also obtain upper bounds on the length of chains of linear algebraic groups, where all the groups are generated over a fixed number field.

Hamilton and Moitra (2021) showed that it is not possible to accelerate Riemannian gradient descent in the hyperbolic plane if we restrict ourselves to algorithms which make queries in a (large) bounded domain and which receive gradients and function values corrupted by a (small) amount of noise. We show that acceleration remains unachievable for any deterministic algorithm which receives exact gradient and function-value information (unbounded queries, no noise). Our results hold for the classes of strongly and nonstrongly geodesically convex functions, and for a large class of Hadamard manifolds including hyperbolic spaces and the symmetric space $\mathrm{SL}(n) / \mathrm{SO}(n)$ of positive definite $n \times n$ matrices of determinant one. This cements a surprising gap between the complexity of convex optimization and geodesically convex optimization: for hyperbolic spaces, Riemannian gradient descent is optimal on the class of smooth and geodesically convex functions. The key idea for proving the lower bound consists of perturbing the hard functions of Hamilton and Moitra (2021) with sums of bump functions chosen by a resisting oracle.

We describe the first gradient methods on Riemannian manifolds to achieve accelerated rates in the non-convex case. Under Lipschitz assumptions on the Riemannian gradient and Hessian of the cost function, these methods find approximate first-order critical points faster than regular gradient descent. A randomized version also finds approximate second-order critical points. Both the algorithms and their analyses build extensively on existing work in the Euclidean case. The basic operation consists in running the Euclidean accelerated gradient descent method (appropriately safe-guarded against non-convexity) in the current tangent space, then moving back to the manifold and repeating. This requires lifting the cost function from the manifold to the tangent space, which can be done for example through the Riemannian exponential map. For this approach to succeed, the lifted cost function (called the pullback) must retain certain Lipschitz properties. As a contribution of independent interest, we prove precise claims to that effect, with explicit constants. Those claims are affected by the Riemannian curvature of the manifold, which in turn affects the worst-case complexity bounds for our optimization algorithms.

In the past few decades polynomial curves with Pythagorean Hodograph (for short PH curves) have received considerable attention due to their usefulness in various CAD/CAM areas, manufacturing, numerical control machining and robotics. This work deals with classes of PH curves built-upon exponential-polynomial spaces (for short EPH curves). In particular, for the two most frequently encountered exponential-polynomial spaces, we first provide necessary and sufficient conditions to be satisfied by the control polygon of the B\'{e}zier-like curve in order to fulfill the PH property. Then, for such EPH curves, fundamental characteristics like parametric speed or cumulative and total arc length are discussed to show the interesting analogies with their well-known polynomial counterparts. Differences and advantages with respect to ordinary PH curves become commendable when discussing the solutions to application problems like the interpolation of first-order Hermite data. Finally, a new evaluation algorithm for EPH curves is proposed and shown to compare favorably with the celebrated de Casteljau-like algorithm and two recently proposed methods: Wo\'zny and Chudy's algorithm and the dynamic evaluation procedure by Yang and Hong.

In this paper we consider the spatial semi-discretization of conservative PDEs. Such finite dimensional approximations of infinite dimensional dynamical systems can be described as flows in suitable matrix spaces, which in turn leads to the need to solve polynomial matrix equations, a classical and important topic both in theoretical and in applied mathematics. Solving numerically these equations is challenging due to the presence of several conservation laws which our finite models incorporate and which must be retained while integrating the equations of motion. In the last thirty years, the theory of geometric integration has provided a variety of techniques to tackle this problem. These numerical methods require to solve both direct and inverse problems in matrix spaces. We present two algorithms to solve a cubic matrix equation arising in the geometric integration of isospectral flows. This type of ODEs includes finite models of ideal hydrodynamics, plasma dynamics, and spin particles, which we use as test problems for our algorithms.

Polynomial expansions are important in the analysis of neural network nonlinearities. They have been applied thereto addressing well-known difficulties in verification, explainability, and security. Existing approaches span classical Taylor and Chebyshev methods, asymptotics, and many numerical approaches. We find that while these individually have useful properties such as exact error formulas, adjustable domain, and robustness to undefined derivatives, there are no approaches that provide a consistent method yielding an expansion with all these properties. To address this, we develop an analytically modified integral transform expansion (AMITE), a novel expansion via integral transforms modified using derived criteria for convergence. We show the general expansion and then demonstrate application for two popular activation functions, hyperbolic tangent and rectified linear units. Compared with existing expansions (i.e., Chebyshev, Taylor, and numerical) employed to this end, AMITE is the first to provide six previously mutually exclusive desired expansion properties such as exact formulas for the coefficients and exact expansion errors (Table II). We demonstrate the effectiveness of AMITE in two case studies. First, a multivariate polynomial form is efficiently extracted from a single hidden layer black-box Multi-Layer Perceptron (MLP) to facilitate equivalence testing from noisy stimulus-response pairs. Second, a variety of Feed-Forward Neural Network (FFNN) architectures having between 3 and 7 layers are range bounded using Taylor models improved by the AMITE polynomials and error formulas. AMITE presents a new dimension of expansion methods suitable for analysis/approximation of nonlinearities in neural networks, opening new directions and opportunities for the theoretical analysis and systematic testing of neural networks.

The purpose of a phase I dose-finding clinical trial is to investigate the toxicity profiles of various doses for a new drug and identify the maximum tolerated dose. Over the past three decades, various dose-finding designs have been proposed and discussed, including conventional model-based designs, new model-based designs using toxicity probability intervals, and rule-based designs. We present a simple decision framework that can generate several popular designs as special cases. We show that these designs share common elements under the framework, such as the same likelihood function, the use of loss functions, and the nature of the optimal decisions as Bayes rules. They differ mostly in the choice of the prior distributions. We present theoretical results on the decision framework and its link to specific and popular designs like mTPI, BOIN, and CRM. These results provide useful insights into the designs and their underlying assumptions, and convey information to help practitioners select an appropriate design.

北京阿比特科技有限公司