亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We consider parametric estimation for multi-dimensional diffusion processes with a small dispersion parameter $\varepsilon$ from discrete observations. For parametric estimation of diffusion processes, the main targets are the drift parameter $\alpha$ and the diffusion parameter $\beta$. In this paper, we propose two types of adaptive estimators for $(\alpha,\beta)$ and show their asymptotic properties under $\varepsilon\to0$, $n\to\infty$ and the balance condition that $(\varepsilon n^\rho)^{-1} =O(1)$ for some $\rho\ge 1/2$. In simulation studies, we examine and compare asymptotic behaviors of the two kinds of adaptive estimators. Moreover, we treat the SIR model which describes a simple epidemic spread for a biological application.

相關內容

We establish connections between invariant theory and maximum likelihood estimation for discrete statistical models. We show that norm minimization over a torus orbit is equivalent to maximum likelihood estimation in log-linear models. We use notions of stability under a torus action to characterize the existence of the maximum likelihood estimate, and discuss connections to scaling algorithms.

In cluster randomized trials, patients are typically recruited after clusters are randomized, and the recruiters and patients may not be blinded to the assignment. This often leads to differential recruitment and consequently systematic differences in baseline characteristics of the recruited patients between intervention and control arms, inducing post-randomization selection bias. We rigorously define causal estimands in the presence of selection bias. We elucidate the conditions under which standard covariate adjustment methods can validly estimate these estimands. We further discuss the additional data and assumptions necessary for estimating causal effects when such conditions are not met. Adopting the principal stratification framework in causal inference, we clarify there are two average treatment effect (ATE) estimands in cluster randomized trials: one for the overall population and one for the recruited population. We derive the analytical formula of the two estimands in terms of principal-stratum-specific causal effects. Using simulation studies, we assess the empirical performance of the multivariable regression adjustment method under different data generating processes leading to selection bias. When treatment effects are heterogeneous across principal strata, the ATE on the overall population generally differs from the ATE on the recruited population. An intention-to-treat analysis of the recruited sample leads to biased estimates of both ATEs. In the presence of post-randomization selection and without additional data on the non-recruited subjects, the ATE on the recruited population is estimable only when the treatment effects are homogenous between principal strata, and the ATE on the overall population is generally not estimable. The extent to which covariate adjustment can remove selection bias depends on the degree of effect heterogeneity across principal strata.

This article studies global testing of the slope function in functional linear regression model in the framework of reproducing kernel Hilbert space. We propose a new testing statistic based on smoothness regularization estimators. The asymptotic distribution of the testing statistic is established under null hypothesis. It is shown that the null asymptotic distribution is determined jointly by the reproducing kernel and the covariance function. Our theoretical analysis shows that the proposed testing is consistent over a class of smooth local alternatives. Despite the generality of the method of regularization, we show the procedure is easily implementable. Numerical examples are provided to demonstrate the empirical advantages over the competing methods.

We provide a posteriori error estimates in the energy norm for temporal semi-discretisations of wave maps into spheres that are based on the angular momentum formulation. Our analysis is based on novel weak-strong stability estimates which we combine with suitable reconstructions of the numerical solution. We present time-adaptive numerical simulations based on the a posteriori error estimators for solutions involving blow-up.

Randomized block Krylov subspace methods form a powerful class of algorithms for computing the extreme eigenvalues of a symmetric matrix or the extreme singular values of a general matrix. The purpose of this paper is to develop new theoretical bounds on the performance of randomized block Krylov subspace methods for these problems. For matrices with polynomial spectral decay, the randomized block Krylov method can obtain an accurate spectral norm estimate using only a constant number of steps (that depends on the decay rate and the accuracy). Furthermore, the analysis reveals that the behavior of the algorithm depends in a delicate way on the block size. Numerical evidence confirms these predictions.

Research in NLP is often supported by experimental results, and improved reporting of such results can lead to better understanding and more reproducible science. In this paper we analyze three statistical estimators for expected validation performance, a tool used for reporting performance (e.g., accuracy) as a function of computational budget (e.g., number of hyperparameter tuning experiments). Where previous work analyzing such estimators focused on the bias, we also examine the variance and mean squared error (MSE). In both synthetic and realistic scenarios, we evaluate three estimators and find the unbiased estimator has the highest variance, and the estimator with the smallest variance has the largest bias; the estimator with the smallest MSE strikes a balance between bias and variance, displaying a classic bias-variance tradeoff. We use expected validation performance to compare between different models, and analyze how frequently each estimator leads to drawing incorrect conclusions about which of two models performs best. We find that the two biased estimators lead to the fewest incorrect conclusions, which hints at the importance of minimizing variance and MSE.

We study the problem of testing the null hypothesis that X and Y are conditionally independent given Z, where each of X, Y and Z may be functional random variables. This generalises testing the significance of X in a regression model of scalar response Y on functional regressors X and Z. We show however that even in the idealised setting where additionally (X, Y, Z) has a Gaussian distribution, the power of any test cannot exceed its size. Further modelling assumptions are needed and we argue that a convenient way of specifying these is based on choosing methods for regressing each of X and Y on Z. We propose a test statistic involving inner products of the resulting residuals that is simple to compute and calibrate: type I error is controlled uniformly when the in-sample prediction errors are sufficiently small. We show this requirement is met by ridge regression in functional linear model settings without requiring any eigen-spacing conditions or lower bounds on the eigenvalues of the covariance of the functional regressor. We apply our test in constructing confidence intervals for truncation points in truncated functional linear models and testing for edges in a functional graphical model for EEG data.

The problem of estimating location (scale) parameters $\theta_1$ and $\theta_2$ of two distributions when the ordering between them is known apriori (say, $\theta_1\leq \theta_2$) has been extensively studied in the literature. Many of these studies are centered around deriving estimators that dominate the maximum likelihood estimators and/or best location (scale) equivariant estimators for the unrestricted case, by exploiting the prior information $\theta_1 \leq \theta_2$. Several of these studies consider specific distributions such that the associated random variables are statistically independent. In this paper, we consider a general bivariate model and general loss function and unify various results proved in the literature. We also consider applications of these results to various dependent bivariate models (bivariate normal, a bivariate exponential model based on a Morgenstern family copula, a bivariate model due to Cheriyan and Ramabhadran's and Mckay's bivariate gamma model) not studied in the literature. We also apply our results to two bivariate models having independent marginals (exponential-location and power-law distributions) that are already studied in the literature, and obtain the results proved in the literature for these models as a special cases of our study.

In this paper, we establish the almost sure convergence of two-timescale stochastic gradient descent algorithms in continuous time under general noise and stability conditions, extending well known results in discrete time. We analyse algorithms with additive noise and those with non-additive noise. In the non-additive case, our analysis is carried out under the assumption that the noise is a continuous-time Markov process, controlled by the algorithm states. The algorithms we consider can be applied to a broad class of bilevel optimisation problems. We study one such problem in detail, namely, the problem of joint online parameter estimation and optimal sensor placement for a partially observed diffusion process. We demonstrate how this can be formulated as a bilevel optimisation problem, and propose a solution in the form of a continuous-time, two-timescale, stochastic gradient descent algorithm. Furthermore, under suitable conditions on the latent signal, the filter, and the filter derivatives, we establish almost sure convergence of the online parameter estimates and optimal sensor placements to the stationary points of the asymptotic log-likelihood and asymptotic filter covariance, respectively. We also provide numerical examples, illustrating the application of the proposed methodology to a partially observed Bene\v{s} equation, and a partially observed stochastic advection-diffusion equation.

Sampling methods (e.g., node-wise, layer-wise, or subgraph) has become an indispensable strategy to speed up training large-scale Graph Neural Networks (GNNs). However, existing sampling methods are mostly based on the graph structural information and ignore the dynamicity of optimization, which leads to high variance in estimating the stochastic gradients. The high variance issue can be very pronounced in extremely large graphs, where it results in slow convergence and poor generalization. In this paper, we theoretically analyze the variance of sampling methods and show that, due to the composite structure of empirical risk, the variance of any sampling method can be decomposed into \textit{embedding approximation variance} in the forward stage and \textit{stochastic gradient variance} in the backward stage that necessities mitigating both types of variance to obtain faster convergence rate. We propose a decoupled variance reduction strategy that employs (approximate) gradient information to adaptively sample nodes with minimal variance, and explicitly reduces the variance introduced by embedding approximation. We show theoretically and empirically that the proposed method, even with smaller mini-batch sizes, enjoys a faster convergence rate and entails a better generalization compared to the existing methods.

北京阿比特科技有限公司