亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Evaluating environmental variables that vary stochastically is the principal topic for designing better environmental management and restoration schemes. Both the upper and lower estimates of these variables, such as water quality indices and flood and drought water levels, are important and should be consistently evaluated within a unified mathematical framework. We propose a novel pair of Orlicz regrets to consistently bound the statistics of random variables both from below and above. Here, consistency indicates that the upper and lower bounds are evaluated with common coefficients and parameter values being different from some of the risk measures proposed thus far. Orlicz regrets can flexibly evaluate the statistics of random variables based on their tail behavior. The explicit linkage between Orlicz regrets and divergence risk measures was exploited to better comprehend them. We obtain sufficient conditions to pose the Orlicz regrets as well as divergence risk measures, and further provide gradient descent-type numerical algorithms to compute them. Finally, we apply the proposed mathematical framework to the statistical evaluation of 31-year water quality data as key environmental indicators in a Japanese river environment.

相關內容

We provide full theoretical guarantees for the convergence behaviour of diffusion-based generative models under the assumption of strongly logconcave data distributions while our approximating class of functions used for score estimation is made of Lipschitz continuous functions. We demonstrate via a motivating example, sampling from a Gaussian distribution with unknown mean, the powerfulness of our approach. In this case, explicit estimates are provided for the associated optimization problem, i.e. score approximation, while these are combined with the corresponding sampling estimates. As a result, we obtain the best known upper bound estimates in terms of key quantities of interest, such as the dimension and rates of convergence, for the Wasserstein-2 distance between the data distribution (Gaussian with unknown mean) and our sampling algorithm. Beyond the motivating example and in order to allow for the use of a diverse range of stochastic optimizers, we present our results using an $L^2$-accurate score estimation assumption, which crucially is formed under an expectation with respect to the stochastic optimizer and our novel auxiliary process that uses only known information. This approach yields the best known convergence rate for our sampling algorithm.

Mediation analysis assesses the extent to which the exposure affects the outcome indirectly through a mediator and the extent to which it operates directly through other pathways. As the most popular method in empirical mediation analysis, the Baron-Kenny approach estimates the indirect and direct effects of the exposure on the outcome based on linear structural equation models. However, when the exposure and the mediator are not randomized, the estimates may be biased due to unmeasured confounding among the exposure, mediator, and outcome. Building on Cinelli and Hazlett (2020), we derive general omitted-variable bias formulas in linear regressions with vector responses and regressors. We then use the formulas to develop a sensitivity analysis method for the Baron-Kenny approach to mediation in the presence of unmeasured confounding. To ensure interpretability, we express the sensitivity parameters to correspond to the natural factorization of the joint distribution of the direct acyclic graph for mediation analysis. They measure the partial correlation between the unmeasured confounder and the exposure, mediator, outcome, respectively. With the sensitivity parameters, we propose a novel measure called the "robustness value for mediation" or simply the "robustness value", to assess the robustness of results based on the Baron-Kenny approach with respect to unmeasured confounding. Intuitively, the robustness value measures the minimum value of the maximum proportion of variability explained by the unmeasured confounding, for the exposure, mediator and outcome, to overturn the results of the point estimate or confidence interval for the direct and indirect effects. Importantly, we prove that all our sensitivity bounds are attainable and thus sharp.

We consider the task of estimating functions belonging to a specific class of nonsmooth functions, namely so-called tame functions. These functions appear in a wide range of applications: training deep learning, value functions of mixed-integer programs, or wave functions of small molecules. We show that tame functions are approximable by piecewise polynomials on any full-dimensional cube. We then present the first ever mixed-integer programming formulation of piecewise polynomial regression. Together, these can be used to estimate tame functions. We demonstrate promising computational results.

The simulation of geological facies in an unobservable volume is essential in various geoscience applications. Given the complexity of the problem, deep generative learning is a promising approach to overcome the limitations of traditional geostatistical simulation models, in particular their lack of physical realism. This research aims to investigate the application of generative adversarial networks and deep variational inference for conditionally simulating meandering channels in underground volumes. In this paper, we review the generative deep learning approaches, in particular the adversarial ones and the stabilization techniques that aim to facilitate their training. The proposed approach is tested on 2D and 3D simulations generated by the stochastic process-based model Flumy. Morphological metrics are utilized to compare our proposed method with earlier iterations of generative adversarial networks. The results indicate that by utilizing recent stabilization techniques, generative adversarial networks can efficiently sample from target data distributions. Moreover, we demonstrate the ability to simulate conditioned simulations through the latent variable model property of the proposed approach.

Working with multiple variables they usually contain difficult to control complex dependencies. This article proposes extraction of their individual information, e.g. $\overline{X|Y}$ as random variable containing information from $X$, but with removed information about $Y$, by using $(x,y) \leftrightarrow (\bar{x}=\textrm{CDF}_{X|Y=y}(x),y)$ reversible normalization. One application can be decoupling of individual information of variables: reversibly transform $(X_1,\ldots,X_n)\leftrightarrow(\tilde{X}_1,\ldots \tilde{X}_n)$ together containing the same information, but being independent: $\forall_{i\neq j} \tilde{X}_i\perp \tilde{X}_j, \tilde{X}_i\perp X_j$. It requires detailed models of complex conditional probability distributions - it is generally a difficult task, but here can be done through multiple dependency reducing iterations, using imperfect methods (here HCR: Hierarchical Correlation Reconstruction). It could be also used for direct mutual information - evaluating direct information transfer: without use of intermediate variables. For causality direction there is discussed multi-feature Granger causality, e.g. to trace various types of individual information transfers between such decoupled variables, including propagation time (delay).

Navigating the challenges of data-driven speech processing, one of the primary hurdles is accessing reliable pathological speech data. While public datasets appear to offer solutions, they come with inherent risks of potential unintended exposure of patient health information via re-identification attacks. Using a comprehensive real-world pathological speech corpus, with over n=3,800 test subjects spanning various age groups and speech disorders, we employed a deep-learning-driven automatic speaker verification (ASV) approach. This resulted in a notable mean equal error rate (EER) of 0.89% with a standard deviation of 0.06%, outstripping traditional benchmarks. Our comprehensive assessments demonstrate that pathological speech overall faces heightened privacy breach risks compared to healthy speech. Specifically, adults with dysphonia are at heightened re-identification risks, whereas conditions like dysarthria yield results comparable to those of healthy speakers. Crucially, speech intelligibility does not influence the ASV system's performance metrics. In pediatric cases, particularly those with cleft lip and palate, the recording environment plays a decisive role in re-identification. Merging data across pathological types led to a marked EER decrease, suggesting the potential benefits of pathological diversity in ASV, accompanied by a logarithmic boost in ASV effectiveness. In essence, this research sheds light on the dynamics between pathological speech and speaker verification, emphasizing its crucial role in safeguarding patient confidentiality in our increasingly digitized healthcare era.

The problem this article addresses is, given a formal specification of a system, how to produce an attack tree that correctly and clearly describes the ways the system can be attacked. Correctness means that the attacks displayed by the attack tree are indeed attacks in the system; clarity means that the tree is efficient in communicating the attack scenario. To pursue clarity, we introduce an attack-tree generation algorithm that minimises the tree size and the information length of its labels without sacrificing correctness. We achieve this by establishing a connection between the problem of factorising algebraic expressions and the problem of minimising the tree size. Notably, our generation algorithm can handle complex attacks that execute actions in parallel and sequentially. For completeness, we introduce a system model that integrates well with our generation approach, and validate the resulting framework via a running example.

Robotic capacities in object manipulation are incomparable to those of humans. Besides years of learning, humans rely heavily on the richness of information from physical interaction with the environment. In particular, tactile sensing is crucial in providing such rich feedback. Despite its potential contributions to robotic manipulation, tactile sensing is less exploited; mainly due to the complexity of the time series provided by tactile sensors. In this work, we propose a method for assessing grasp stability using tactile sensing. More specifically, we propose a methodology to extract task-relevant features and design efficient classifiers to detect object slippage with respect to individual fingertips. We compare two classification models: support vector machine and logistic regression. We use highly sensitive Uskin tactile sensors mounted on an Allegro hand to test and validate our method. Our results demonstrate that the proposed method is effective in slippage detection in an online fashion.

In relational verification, judicious alignment of computational steps facilitates proof of relations between programs using simple relational assertions. Relational Hoare logics (RHL) provide compositional rules that embody various alignments of executions. Seemingly more flexible alignments can be expressed in terms of product automata based on program transition relations. A single degenerate alignment rule (self-composition), atop a complete Hoare logic, comprises a RHL for $\forall\forall$ properties that is complete in the ordinary logical sense. The notion of alignment completeness was previously proposed as a more satisfactory measure, and some rules were shown to be alignment complete with respect to a few ad hoc forms of alignment automata. This paper proves alignment completeness with respect to a general class of $\forall\forall$ alignment automata, for a RHL comprised of standard rules together with a rule of semantics-preserving rewrites based on Kleene algebra with tests. A new logic for $\forall\exists$ properties is introduced and shown to be alignment complete. The $\forall\forall$ and $\forall\exists$ automata are shown to be semantically complete. Thus the logics are both complete in the ordinary sense.

We observe a large variety of robots in terms of their bodies, sensors, and actuators. Given the commonalities in the skill sets, teaching each skill to each different robot independently is inefficient and not scalable when the large variety in the robotic landscape is considered. If we can learn the correspondences between the sensorimotor spaces of different robots, we can expect a skill that is learned in one robot can be more directly and easily transferred to other robots. In this paper, we propose a method to learn correspondences among two or more robots that may have different morphologies. To be specific, besides robots with similar morphologies with different degrees of freedom, we show that a fixed-based manipulator robot with joint control and a differential drive mobile robot can be addressed within the proposed framework. To set up the correspondence among the robots considered, an initial base task is demonstrated to the robots to achieve the same goal. Then, a common latent representation is learned along with the individual robot policies for achieving the goal. After the initial learning stage, the observation of a new task execution by one robot becomes sufficient to generate a latent space representation pertaining to the other robots to achieve the same task. We verified our system in a set of experiments where the correspondence between robots is learned (1) when the robots need to follow the same paths to achieve the same task, (2) when the robots need to follow different trajectories to achieve the same task, and (3) when complexities of the required sensorimotor trajectories are different for the robots. We also provide a proof-of-the-concept realization of correspondence learning between a real manipulator robot and a simulated mobile robot.

北京阿比特科技有限公司