亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Atomic congestion games are a classic topic in network design, routing, and algorithmic game theory, and are capable of modeling congestion and flow optimization tasks in various application areas. While both the price of anarchy for such games as well as the computational complexity of computing their Nash equilibria are by now well-understood, the computational complexity of computing a system-optimal set of strategies -- that is, a centrally planned routing that minimizes the average cost of agents -- is severely understudied in the literature. We close this gap by identifying the exact boundaries of tractability for the problem through the lens of the parameterized complexity paradigm. After showing that the problem remains highly intractable even on extremely simple networks, we obtain a set of results which demonstrate that the structural parameters which control the computational (in)tractability of the problem are not vertex-separator based in nature (such as, e.g., treewidth), but rather based on edge separators. We conclude by extending our analysis towards the (even more challenging) min-max variant of the problem.

相關內容

GitHub 發(fa)布(bu)的文本(ben)編輯(ji)器。

We consider approximating so-called tame functions, a class of nonsmooth, nonconvex functions, with piecewise polynomial functions. Tame functions appear in a wide range of applications: functions encountered in the training of deep neural networks with all common activations, value functions of mixed-integer programs, or wave functions of small molecules. We bound the quality of approximation of a tame function by a piecewise polynomial function with a given number of segments on any full-dimensional cube. We also present the first ever mixed-integer programming formulation of piecewise polynomial regression. Together, these can be used to estimate tame functions. We demonstrate promising computational results.

Cooperative game theory has diverse applications in contemporary artificial intelligence, including domains like interpretable machine learning, resource allocation, and collaborative decision-making. However, specifying a cooperative game entails assigning values to exponentially many coalitions, and obtaining even a single value can be resource-intensive in practice. Yet simply leaving certain coalition values undisclosed introduces ambiguity regarding individual contributions to the collective grand coalition. This ambiguity often leads to players holding overly optimistic expectations, stemming from either inherent biases or strategic considerations, frequently resulting in collective claims exceeding the actual grand coalition value. In this paper, we present a framework aimed at optimizing the sequence for revealing coalition values, with the overarching goal of efficiently closing the gap between players' expectations and achievable outcomes in cooperative games. Our contributions are threefold: (i) we study the individual players' optimistic completions of games with missing coalition values along with the arising gap, and investigate its analytical characteristics that facilitate more efficient optimization; (ii) we develop methods to minimize this gap over classes of games with a known prior by disclosing values of additional coalitions in both offline and online fashion; and (iii) we empirically demonstrate the algorithms' performance in practical scenarios, together with an investigation into the typical order of revealing coalition values.

Image captioning models are typically trained by treating all samples equally, neglecting to account for mismatched or otherwise difficult data points. In contrast, recent work has shown the effectiveness of training models by scheduling the data using curriculum learning strategies. This paper contributes to this direction by actively curating difficult samples in datasets without increasing the total number of samples. We explore the effect of using three data curation methods within the training process: complete removal of an sample, caption replacement, or image replacement via a text-to-image generation model. Experiments on the Flickr30K and COCO datasets with the BLIP and BEiT-3 models demonstrate that these curation methods do indeed yield improved image captioning models, underscoring their efficacy.

Reasoning about resources used during the execution of programs, such as time, is one of the fundamental questions in computer science. When programming with probabilistic primitives, however, different samples may result in different resource usage, making the cost of a program not a single number but a distribution instead. The expected cost is an important metric used to quantify the efficiency of probabilistic programs. In this work we introduce $\mathbf{cert}$, a call-by-push-value (CBPV) metalanguage extended with primitives for probability, cost and unbounded recursion, and give it denotational semantics for reasoning about the average cost of programs. We justify the validity of the semantics by presenting case-studies ranging from randomized algorithms to stochastic processes and showing how the semantics captures their intended cost.

Neural networks are known to exploit spurious artifacts (or shortcuts) that co-occur with a target label, exhibiting heuristic memorization. On the other hand, networks have been shown to memorize training examples, resulting in example-level memorization. These kinds of memorization impede generalization of networks beyond their training distributions. Detecting such memorization could be challenging, often requiring researchers to curate tailored test sets. In this work, we hypothesize -- and subsequently show -- that the diversity in the activation patterns of different neurons is reflective of model generalization and memorization. We quantify the diversity in the neural activations through information-theoretic measures and find support for our hypothesis on experiments spanning several natural language and vision tasks. Importantly, we discover that information organization points to the two forms of memorization, even for neural activations computed on unlabelled in-distribution examples. Lastly, we demonstrate the utility of our findings for the problem of model selection. The associated code and other resources for this work are available at //rachitbansal.github.io/information-measures.

Reasoning, a crucial ability for complex problem-solving, plays a pivotal role in various real-world settings such as negotiation, medical diagnosis, and criminal investigation. It serves as a fundamental methodology in the field of Artificial General Intelligence (AGI). With the ongoing development of foundation models, e.g., Large Language Models (LLMs), there is a growing interest in exploring their abilities in reasoning tasks. In this paper, we introduce seminal foundation models proposed or adaptable for reasoning, highlighting the latest advancements in various reasoning tasks, methods, and benchmarks. We then delve into the potential future directions behind the emergence of reasoning abilities within foundation models. We also discuss the relevance of multimodal learning, autonomous agents, and super alignment in the context of reasoning. By discussing these future research directions, we hope to inspire researchers in their exploration of this field, stimulate further advancements in reasoning with foundation models, and contribute to the development of AGI.

The concept of causality plays an important role in human cognition . In the past few decades, causal inference has been well developed in many fields, such as computer science, medicine, economics, and education. With the advancement of deep learning techniques, it has been increasingly used in causal inference against counterfactual data. Typically, deep causal models map the characteristics of covariates to a representation space and then design various objective optimization functions to estimate counterfactual data unbiasedly based on the different optimization methods. This paper focuses on the survey of the deep causal models, and its core contributions are as follows: 1) we provide relevant metrics under multiple treatments and continuous-dose treatment; 2) we incorporate a comprehensive overview of deep causal models from both temporal development and method classification perspectives; 3) we assist a detailed and comprehensive classification and analysis of relevant datasets and source code.

Residual networks (ResNets) have displayed impressive results in pattern recognition and, recently, have garnered considerable theoretical interest due to a perceived link with neural ordinary differential equations (neural ODEs). This link relies on the convergence of network weights to a smooth function as the number of layers increases. We investigate the properties of weights trained by stochastic gradient descent and their scaling with network depth through detailed numerical experiments. We observe the existence of scaling regimes markedly different from those assumed in neural ODE literature. Depending on certain features of the network architecture, such as the smoothness of the activation function, one may obtain an alternative ODE limit, a stochastic differential equation or neither of these. These findings cast doubts on the validity of the neural ODE model as an adequate asymptotic description of deep ResNets and point to an alternative class of differential equations as a better description of the deep network limit.

We describe the new field of mathematical analysis of deep learning. This field emerged around a list of research questions that were not answered within the classical framework of learning theory. These questions concern: the outstanding generalization power of overparametrized neural networks, the role of depth in deep architectures, the apparent absence of the curse of dimensionality, the surprisingly successful optimization performance despite the non-convexity of the problem, understanding what features are learned, why deep architectures perform exceptionally well in physical problems, and which fine aspects of an architecture affect the behavior of a learning task in which way. We present an overview of modern approaches that yield partial answers to these questions. For selected approaches, we describe the main ideas in more detail.

Co-evolving time series appears in a multitude of applications such as environmental monitoring, financial analysis, and smart transportation. This paper aims to address the following challenges, including (C1) how to incorporate explicit relationship networks of the time series; (C2) how to model the implicit relationship of the temporal dynamics. We propose a novel model called Network of Tensor Time Series, which is comprised of two modules, including Tensor Graph Convolutional Network (TGCN) and Tensor Recurrent Neural Network (TRNN). TGCN tackles the first challenge by generalizing Graph Convolutional Network (GCN) for flat graphs to tensor graphs, which captures the synergy between multiple graphs associated with the tensors. TRNN leverages tensor decomposition to model the implicit relationships among co-evolving time series. The experimental results on five real-world datasets demonstrate the efficacy of the proposed method.

北京阿比特科技有限公司