{mayi_des}

亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Porous crystalline materials have the potential to play a key role in developing solutions for molecular storage, gas separation and carbon adsorption. For these solutions, we need to develop new materials with specific properties. Estimating the properties of such porous materials involves first principle simulation using classical molecular simulations. The computational complexity of these methods can be a barrier to high throughput screening of the potential materials as the space of possible materials is vast. Data-driven methods, specifically machine learning methods based on deep neural networks offer a significant opportunity to significantly scale the simulation of the behavior of these materials. However, to effectively achieve this the Deep Learning models need to utilize the symmetries present in the crystals. Crystals pose specific symmetries that are present in their space group. Existing methods for crystal property prediction either have symmetry constraints that are too restrictive or only incorporate symmetries between unit cells. In addition, these models do not explicitly model the porous structure of the crystal. In this paper, we develop a model which incorporates the symmetries of the unit cell of a crystal in its architecture and explicitly models the porous structure. We evaluate our model by predicting the heat of adsorption of CO$_2$ for different configurations of the Mordenite and ZSM-5 zeolites. Our results confirm that our method performs better than existing methods for crystal property prediction and that the inclusion of pores results in a more efficient model.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · 類別 · 等式約束 · 參數空間 · 講稿 ·
2023 年 10 月 10 日

We propose an adaptive time step with energy for a large class of preconditioned gradient descent methods, mainly applied to constrained optimization problems. Our strategy relies on representing the usual descent direction by the product of an energy variable and a transformed gradient, with a preconditioning matrix, for example, to reflect the natural gradient induced by the underlying metric in parameter space or to endow a projection operator when linear equality constraints are present. We present theoretical results on both unconditional stability and convergence rates for three respective classes of objective functions. In addition, our numerical results shed light on the excellent performance of the proposed method on several benchmark optimization problems.

This paper provides a general framework for testing instrument validity in heterogeneous causal effect models. The generalization includes the cases where the treatment can be multivalued ordered or unordered. Based on a series of testable implications, we propose a nonparametric test which is proved to be asymptotically size controlled and consistent. Compared to the tests in the literature, our test can be applied in more general settings and may achieve power improvement. Refutation of instrument validity by the test helps detect invalid instruments that may yield implausible results on causal effects. Evidence that the test performs well on finite samples is provided via simulations. We revisit the empirical study on return to schooling to demonstrate application of the proposed test in practice. An extended continuous mapping theorem and an extended delta method, which may be of independent interest, are provided to establish the asymptotic distribution of the test statistic under null.

Hyperspectral measurements from long range sensors can give a detailed picture of the items, materials, and chemicals in a scene but analysis can be difficult, slow, and expensive due to high spatial and spectral resolutions of state-of-the-art sensors. As such, sparsity is important to enable the future of spectral compression and analytics. It has been observed that environmental and atmospheric effects, including scattering, can produce nonlinear effects posing challenges for existing source separation and compression methods. We present a novel transformation into Hilbert spaces for pruning and constructing sparse representations via non-negative least squares minimization. Then we introduce max likelihood compression vectors to decrease information loss. Our approach is benchmarked against standard pruning and least squares as well as deep learning methods. Our methods are evaluated in terms of overall spectral reconstruction error and compression rate using real and synthetic data. We find that pruning least squares methods converge quickly unlike matching pursuit methods. We find that Hilbert space pruning can reduce error by as much as 40% of the error of standard pruning and also outperform neural network autoencoders.

As an anode material for lithium-ion batteries, amorphous silicon offers a significantly higher energy density than the graphite anodes currently used. Alloying reactions of lithium and silicon, however, induce large deformation and lead to volume changes up to 300%. We formulate a thermodynamically consistent continuum model for the chemo-elasto-plastic diffusion-deformation based on finite deformations. In this paper, a plastic deformation approach with linear isotropic hardening and a viscoplastic deformation ansatz are investigated and compared to allow the evolution of plastic deformations and reduce occurring stresses. For both models, a return mapping can be derived to update the equivalent plastic strain for the next time step. Using a finite element method and an efficient space and time adaptive solution algorithm a large number of charging cycles can be examined. We derive a linearization for the global Newton scheme and compare it to an automatic differentiation technique regarding the numerical performance and physical results. Both plastic approaches lead to a stronger heterogeneous concentration distribution and to a change to tensile tangential Cauchy stresses at the particle surface at the end of one charging cycle. Different parameter studies show how an amplification of the plastic deformation is affected. Interestingly, an elliptical particle shows only plastic deformation at the smaller half axis. With the demonstrated efficiency of the applied methods, results after five charging cycles are also discussed and can provide indications for the performance of lithium-ion batteries in long term use.

Substantial research works have shown that deep models, e.g., pre-trained models, on the large corpus can learn universal language representations, which are beneficial for downstream NLP tasks. However, these powerful models are also vulnerable to various privacy attacks, while much sensitive information exists in the training dataset. The attacker can easily steal sensitive information from public models, e.g., individuals' email addresses and phone numbers. In an attempt to address these issues, particularly the unauthorized use of private data, we introduce a novel watermarking technique via a backdoor-based membership inference approach named TextMarker, which can safeguard diverse forms of private information embedded in the training text data. Specifically, TextMarker only requires data owners to mark a small number of samples for data copyright protection under the black-box access assumption to the target model. Through extensive evaluation, we demonstrate the effectiveness of TextMarker on various real-world datasets, e.g., marking only 0.1% of the training dataset is practically sufficient for effective membership inference with negligible effect on model utility. We also discuss potential countermeasures and show that TextMarker is stealthy enough to bypass them.

We propose a tensor product structure that is compatible with the hypergraph structure. We define the algebraic connectivity of the $(m+1)$-uniform hypergraph in this product, and prove the relationship with the vertex connectivity. We introduce some connectivity optimization problem into the hypergraph, and solve them with the algebraic connectivity. We introduce the Laplacian eigenmap algorithm to the hypergraph under our tensor product.

We propose a variational technique to optimize for generalized barycentric coordinates that offers additional control compared to existing models. Prior work represents barycentric coordinates using meshes or closed-form formulae, in practice limiting the choice of objective function. In contrast, we directly parameterize the continuous function that maps any coordinate in a polytope's interior to its barycentric coordinates using a neural field. This formulation is enabled by our theoretical characterization of barycentric coordinates, which allows us to construct neural fields that parameterize the entire function class of valid coordinates. We demonstrate the flexibility of our model using a variety of objective functions, including multiple smoothness and deformation-aware energies; as a side contribution, we also present mathematically-justified means of measuring and minimizing objectives like total variation on discontinuous neural fields. We offer a practical acceleration strategy, present a thorough validation of our algorithm, and demonstrate several applications.

Software engineering is a domain characterized by intricate decision-making processes, often relying on nuanced intuition and consultation. Recent advancements in deep learning have started to revolutionize software engineering practices through elaborate designs implemented at various stages of software development. In this paper, we present an innovative paradigm that leverages large language models (LLMs) throughout the entire software development process, streamlining and unifying key processes through natural language communication, thereby eliminating the need for specialized models at each phase. At the core of this paradigm lies ChatDev, a virtual chat-powered software development company that mirrors the established waterfall model, meticulously dividing the development process into four distinct chronological stages: designing, coding, testing, and documenting. Each stage engages a team of agents, such as programmers, code reviewers, and test engineers, fostering collaborative dialogue and facilitating a seamless workflow. The chat chain acts as a facilitator, breaking down each stage into atomic subtasks. This enables dual roles, allowing for proposing and validating solutions through context-aware communication, leading to efficient resolution of specific subtasks. The instrumental analysis of ChatDev highlights its remarkable efficacy in software generation, enabling the completion of the entire software development process in under seven minutes at a cost of less than one dollar. It not only identifies and alleviates potential vulnerabilities but also rectifies potential hallucinations while maintaining commendable efficiency and cost-effectiveness. The potential of ChatDev unveils fresh possibilities for integrating LLMs into the realm of software development.

This paper proposes a generic method to learn interpretable convolutional filters in a deep convolutional neural network (CNN) for object classification, where each interpretable filter encodes features of a specific object part. Our method does not require additional annotations of object parts or textures for supervision. Instead, we use the same training data as traditional CNNs. Our method automatically assigns each interpretable filter in a high conv-layer with an object part of a certain category during the learning process. Such explicit knowledge representations in conv-layers of CNN help people clarify the logic encoded in the CNN, i.e., answering what patterns the CNN extracts from an input image and uses for prediction. We have tested our method using different benchmark CNNs with various structures to demonstrate the broad applicability of our method. Experiments have shown that our interpretable filters are much more semantically meaningful than traditional filters.

Benefit from the quick development of deep learning techniques, salient object detection has achieved remarkable progresses recently. However, there still exists following two major challenges that hinder its application in embedded devices, low resolution output and heavy model weight. To this end, this paper presents an accurate yet compact deep network for efficient salient object detection. More specifically, given a coarse saliency prediction in the deepest layer, we first employ residual learning to learn side-output residual features for saliency refinement, which can be achieved with very limited convolutional parameters while keep accuracy. Secondly, we further propose reverse attention to guide such side-output residual learning in a top-down manner. By erasing the current predicted salient regions from side-output features, the network can eventually explore the missing object parts and details which results in high resolution and accuracy. Experiments on six benchmark datasets demonstrate that the proposed approach compares favorably against state-of-the-art methods, and with advantages in terms of simplicity, efficiency (45 FPS) and model size (81 MB).

北京阿比特科技有限公司
2$ for different configurations of the Mordenite and ZSM-5 zeolites. Our results confirm that our method performs better than existing methods for crystal property prediction and that the inclusion of pores results in a more efficient model. ">

亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Porous crystalline materials have the potential to play a key role in developing solutions for molecular storage, gas separation and carbon adsorption. For these solutions, we need to develop new materials with specific properties. Estimating the properties of such porous materials involves first principle simulation using classical molecular simulations. The computational complexity of these methods can be a barrier to high throughput screening of the potential materials as the space of possible materials is vast. Data-driven methods, specifically machine learning methods based on deep neural networks offer a significant opportunity to significantly scale the simulation of the behavior of these materials. However, to effectively achieve this the Deep Learning models need to utilize the symmetries present in the crystals. Crystals pose specific symmetries that are present in their space group. Existing methods for crystal property prediction either have symmetry constraints that are too restrictive or only incorporate symmetries between unit cells. In addition, these models do not explicitly model the porous structure of the crystal. In this paper, we develop a model which incorporates the symmetries of the unit cell of a crystal in its architecture and explicitly models the porous structure. We evaluate our model by predicting the heat of adsorption of CO$_2$ for different configurations of the Mordenite and ZSM-5 zeolites. Our results confirm that our method performs better than existing methods for crystal property prediction and that the inclusion of pores results in a more efficient model.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · 類別 · 等式約束 · 參數空間 · 講稿 ·
2023 年 10 月 10 日

We propose an adaptive time step with energy for a large class of preconditioned gradient descent methods, mainly applied to constrained optimization problems. Our strategy relies on representing the usual descent direction by the product of an energy variable and a transformed gradient, with a preconditioning matrix, for example, to reflect the natural gradient induced by the underlying metric in parameter space or to endow a projection operator when linear equality constraints are present. We present theoretical results on both unconditional stability and convergence rates for three respective classes of objective functions. In addition, our numerical results shed light on the excellent performance of the proposed method on several benchmark optimization problems.

This paper provides a general framework for testing instrument validity in heterogeneous causal effect models. The generalization includes the cases where the treatment can be multivalued ordered or unordered. Based on a series of testable implications, we propose a nonparametric test which is proved to be asymptotically size controlled and consistent. Compared to the tests in the literature, our test can be applied in more general settings and may achieve power improvement. Refutation of instrument validity by the test helps detect invalid instruments that may yield implausible results on causal effects. Evidence that the test performs well on finite samples is provided via simulations. We revisit the empirical study on return to schooling to demonstrate application of the proposed test in practice. An extended continuous mapping theorem and an extended delta method, which may be of independent interest, are provided to establish the asymptotic distribution of the test statistic under null.

Hyperspectral measurements from long range sensors can give a detailed picture of the items, materials, and chemicals in a scene but analysis can be difficult, slow, and expensive due to high spatial and spectral resolutions of state-of-the-art sensors. As such, sparsity is important to enable the future of spectral compression and analytics. It has been observed that environmental and atmospheric effects, including scattering, can produce nonlinear effects posing challenges for existing source separation and compression methods. We present a novel transformation into Hilbert spaces for pruning and constructing sparse representations via non-negative least squares minimization. Then we introduce max likelihood compression vectors to decrease information loss. Our approach is benchmarked against standard pruning and least squares as well as deep learning methods. Our methods are evaluated in terms of overall spectral reconstruction error and compression rate using real and synthetic data. We find that pruning least squares methods converge quickly unlike matching pursuit methods. We find that Hilbert space pruning can reduce error by as much as 40% of the error of standard pruning and also outperform neural network autoencoders.

As an anode material for lithium-ion batteries, amorphous silicon offers a significantly higher energy density than the graphite anodes currently used. Alloying reactions of lithium and silicon, however, induce large deformation and lead to volume changes up to 300%. We formulate a thermodynamically consistent continuum model for the chemo-elasto-plastic diffusion-deformation based on finite deformations. In this paper, a plastic deformation approach with linear isotropic hardening and a viscoplastic deformation ansatz are investigated and compared to allow the evolution of plastic deformations and reduce occurring stresses. For both models, a return mapping can be derived to update the equivalent plastic strain for the next time step. Using a finite element method and an efficient space and time adaptive solution algorithm a large number of charging cycles can be examined. We derive a linearization for the global Newton scheme and compare it to an automatic differentiation technique regarding the numerical performance and physical results. Both plastic approaches lead to a stronger heterogeneous concentration distribution and to a change to tensile tangential Cauchy stresses at the particle surface at the end of one charging cycle. Different parameter studies show how an amplification of the plastic deformation is affected. Interestingly, an elliptical particle shows only plastic deformation at the smaller half axis. With the demonstrated efficiency of the applied methods, results after five charging cycles are also discussed and can provide indications for the performance of lithium-ion batteries in long term use.

Substantial research works have shown that deep models, e.g., pre-trained models, on the large corpus can learn universal language representations, which are beneficial for downstream NLP tasks. However, these powerful models are also vulnerable to various privacy attacks, while much sensitive information exists in the training dataset. The attacker can easily steal sensitive information from public models, e.g., individuals' email addresses and phone numbers. In an attempt to address these issues, particularly the unauthorized use of private data, we introduce a novel watermarking technique via a backdoor-based membership inference approach named TextMarker, which can safeguard diverse forms of private information embedded in the training text data. Specifically, TextMarker only requires data owners to mark a small number of samples for data copyright protection under the black-box access assumption to the target model. Through extensive evaluation, we demonstrate the effectiveness of TextMarker on various real-world datasets, e.g., marking only 0.1% of the training dataset is practically sufficient for effective membership inference with negligible effect on model utility. We also discuss potential countermeasures and show that TextMarker is stealthy enough to bypass them.

We propose a tensor product structure that is compatible with the hypergraph structure. We define the algebraic connectivity of the $(m+1)$-uniform hypergraph in this product, and prove the relationship with the vertex connectivity. We introduce some connectivity optimization problem into the hypergraph, and solve them with the algebraic connectivity. We introduce the Laplacian eigenmap algorithm to the hypergraph under our tensor product.

We propose a variational technique to optimize for generalized barycentric coordinates that offers additional control compared to existing models. Prior work represents barycentric coordinates using meshes or closed-form formulae, in practice limiting the choice of objective function. In contrast, we directly parameterize the continuous function that maps any coordinate in a polytope's interior to its barycentric coordinates using a neural field. This formulation is enabled by our theoretical characterization of barycentric coordinates, which allows us to construct neural fields that parameterize the entire function class of valid coordinates. We demonstrate the flexibility of our model using a variety of objective functions, including multiple smoothness and deformation-aware energies; as a side contribution, we also present mathematically-justified means of measuring and minimizing objectives like total variation on discontinuous neural fields. We offer a practical acceleration strategy, present a thorough validation of our algorithm, and demonstrate several applications.

Software engineering is a domain characterized by intricate decision-making processes, often relying on nuanced intuition and consultation. Recent advancements in deep learning have started to revolutionize software engineering practices through elaborate designs implemented at various stages of software development. In this paper, we present an innovative paradigm that leverages large language models (LLMs) throughout the entire software development process, streamlining and unifying key processes through natural language communication, thereby eliminating the need for specialized models at each phase. At the core of this paradigm lies ChatDev, a virtual chat-powered software development company that mirrors the established waterfall model, meticulously dividing the development process into four distinct chronological stages: designing, coding, testing, and documenting. Each stage engages a team of agents, such as programmers, code reviewers, and test engineers, fostering collaborative dialogue and facilitating a seamless workflow. The chat chain acts as a facilitator, breaking down each stage into atomic subtasks. This enables dual roles, allowing for proposing and validating solutions through context-aware communication, leading to efficient resolution of specific subtasks. The instrumental analysis of ChatDev highlights its remarkable efficacy in software generation, enabling the completion of the entire software development process in under seven minutes at a cost of less than one dollar. It not only identifies and alleviates potential vulnerabilities but also rectifies potential hallucinations while maintaining commendable efficiency and cost-effectiveness. The potential of ChatDev unveils fresh possibilities for integrating LLMs into the realm of software development.

This paper proposes a generic method to learn interpretable convolutional filters in a deep convolutional neural network (CNN) for object classification, where each interpretable filter encodes features of a specific object part. Our method does not require additional annotations of object parts or textures for supervision. Instead, we use the same training data as traditional CNNs. Our method automatically assigns each interpretable filter in a high conv-layer with an object part of a certain category during the learning process. Such explicit knowledge representations in conv-layers of CNN help people clarify the logic encoded in the CNN, i.e., answering what patterns the CNN extracts from an input image and uses for prediction. We have tested our method using different benchmark CNNs with various structures to demonstrate the broad applicability of our method. Experiments have shown that our interpretable filters are much more semantically meaningful than traditional filters.

Benefit from the quick development of deep learning techniques, salient object detection has achieved remarkable progresses recently. However, there still exists following two major challenges that hinder its application in embedded devices, low resolution output and heavy model weight. To this end, this paper presents an accurate yet compact deep network for efficient salient object detection. More specifically, given a coarse saliency prediction in the deepest layer, we first employ residual learning to learn side-output residual features for saliency refinement, which can be achieved with very limited convolutional parameters while keep accuracy. Secondly, we further propose reverse attention to guide such side-output residual learning in a top-down manner. By erasing the current predicted salient regions from side-output features, the network can eventually explore the missing object parts and details which results in high resolution and accuracy. Experiments on six benchmark datasets demonstrate that the proposed approach compares favorably against state-of-the-art methods, and with advantages in terms of simplicity, efficiency (45 FPS) and model size (81 MB).

北京阿比特科技有限公司