In this study, we explore the robustness of cooperative multi-agent reinforcement learning (c-MARL) against Byzantine failures, where any agent can enact arbitrary, worst-case actions due to malfunction or adversarial attack. To address the uncertainty that any agent can be adversarial, we propose a Bayesian Adversarial Robust Dec-POMDP (BARDec-POMDP) framework, which views Byzantine adversaries as nature-dictated types, represented by a separate transition. This allows agents to learn policies grounded on their posterior beliefs about the type of other agents, fostering collaboration with identified allies and minimizing vulnerability to adversarial manipulation. We define the optimal solution to the BARDec-POMDP as an ex post robust Bayesian Markov perfect equilibrium, which we proof to exist and weakly dominates the equilibrium of previous robust MARL approaches. To realize this equilibrium, we put forward a two-timescale actor-critic algorithm with almost sure convergence under specific conditions. Experimentation on matrix games, level-based foraging and StarCraft II indicate that, even under worst-case perturbations, our method successfully acquires intricate micromanagement skills and adaptively aligns with allies, demonstrating resilience against non-oblivious adversaries, random allies, observation-based attacks, and transfer-based attacks.
It has been shown that deep neural networks are prone to overfitting on biased training data. Towards addressing this issue, meta-learning employs a meta model for correcting the training bias. Despite the promising performances, super slow training is currently the bottleneck in the meta learning approaches. In this paper, we introduce a novel Faster Meta Update Strategy (FaMUS) to replace the most expensive step in the meta gradient computation with a faster layer-wise approximation. We empirically find that FaMUS yields not only a reasonably accurate but also a low-variance approximation of the meta gradient. We conduct extensive experiments to verify the proposed method on two tasks. We show our method is able to save two-thirds of the training time while still maintaining the comparable or achieving even better generalization performance. In particular, our method achieves the state-of-the-art performance on both synthetic and realistic noisy labels, and obtains promising performance on long-tailed recognition on standard benchmarks.
While recent studies on semi-supervised learning have shown remarkable progress in leveraging both labeled and unlabeled data, most of them presume a basic setting of the model is randomly initialized. In this work, we consider semi-supervised learning and transfer learning jointly, leading to a more practical and competitive paradigm that can utilize both powerful pre-trained models from source domain as well as labeled/unlabeled data in the target domain. To better exploit the value of both pre-trained weights and unlabeled target examples, we introduce adaptive consistency regularization that consists of two complementary components: Adaptive Knowledge Consistency (AKC) on the examples between the source and target model, and Adaptive Representation Consistency (ARC) on the target model between labeled and unlabeled examples. Examples involved in the consistency regularization are adaptively selected according to their potential contributions to the target task. We conduct extensive experiments on several popular benchmarks including CUB-200-2011, MIT Indoor-67, MURA, by fine-tuning the ImageNet pre-trained ResNet-50 model. Results show that our proposed adaptive consistency regularization outperforms state-of-the-art semi-supervised learning techniques such as Pseudo Label, Mean Teacher, and MixMatch. Moreover, our algorithm is orthogonal to existing methods and thus able to gain additional improvements on top of MixMatch and FixMatch. Our code is available at //github.com/SHI-Labs/Semi-Supervised-Transfer-Learning.
Rehearsal, seeking to remind the model by storing old knowledge in lifelong learning, is one of the most effective ways to mitigate catastrophic forgetting, i.e., biased forgetting of previous knowledge when moving to new tasks. However, the old tasks of the most previous rehearsal-based methods suffer from the unpredictable domain shift when training the new task. This is because these methods always ignore two significant factors. First, the Data Imbalance between the new task and old tasks that makes the domain of old tasks prone to shift. Second, the Task Isolation among all tasks will make the domain shift toward unpredictable directions; To address the unpredictable domain shift, in this paper, we propose Multi-Domain Multi-Task (MDMT) rehearsal to train the old tasks and new task parallelly and equally to break the isolation among tasks. Specifically, a two-level angular margin loss is proposed to encourage the intra-class/task compactness and inter-class/task discrepancy, which keeps the model from domain chaos. In addition, to further address domain shift of the old tasks, we propose an optional episodic distillation loss on the memory to anchor the knowledge for each old task. Experiments on benchmark datasets validate the proposed approach can effectively mitigate the unpredictable domain shift.
There has been appreciable progress in unsupervised network representation learning (UNRL) approaches over graphs recently with flexible random-walk approaches, new optimization objectives and deep architectures. However, there is no common ground for systematic comparison of embeddings to understand their behavior for different graphs and tasks. In this paper we theoretically group different approaches under a unifying framework and empirically investigate the effectiveness of different network representation methods. In particular, we argue that most of the UNRL approaches either explicitly or implicit model and exploit context information of a node. Consequently, we propose a framework that casts a variety of approaches -- random walk based, matrix factorization and deep learning based -- into a unified context-based optimization function. We systematically group the methods based on their similarities and differences. We study the differences among these methods in detail which we later use to explain their performance differences (on downstream tasks). We conduct a large-scale empirical study considering 9 popular and recent UNRL techniques and 11 real-world datasets with varying structural properties and two common tasks -- node classification and link prediction. We find that there is no single method that is a clear winner and that the choice of a suitable method is dictated by certain properties of the embedding methods, task and structural properties of the underlying graph. In addition we also report the common pitfalls in evaluation of UNRL methods and come up with suggestions for experimental design and interpretation of results.
For better user experience and business effectiveness, Click-Through Rate (CTR) prediction has been one of the most important tasks in E-commerce. Although extensive CTR prediction models have been proposed, learning good representation of items from multimodal features is still less investigated, considering an item in E-commerce usually contains multiple heterogeneous modalities. Previous works either concatenate the multiple modality features, that is equivalent to giving a fixed importance weight to each modality; or learn dynamic weights of different modalities for different items through technique like attention mechanism. However, a problem is that there usually exists common redundant information across multiple modalities. The dynamic weights of different modalities computed by using the redundant information may not correctly reflect the different importance of each modality. To address this, we explore the complementarity and redundancy of modalities by considering modality-specific and modality-invariant features differently. We propose a novel Multimodal Adversarial Representation Network (MARN) for the CTR prediction task. A multimodal attention network first calculates the weights of multiple modalities for each item according to its modality-specific features. Then a multimodal adversarial network learns modality-invariant representations where a double-discriminators strategy is introduced. Finally, we achieve the multimodal item representations by combining both modality-specific and modality-invariant representations. We conduct extensive experiments on both public and industrial datasets, and the proposed method consistently achieves remarkable improvements to the state-of-the-art methods. Moreover, the approach has been deployed in an operational E-commerce system and online A/B testing further demonstrates the effectiveness.
Video anomaly detection under weak labels is formulated as a typical multiple-instance learning problem in previous works. In this paper, we provide a new perspective, i.e., a supervised learning task under noisy labels. In such a viewpoint, as long as cleaning away label noise, we can directly apply fully supervised action classifiers to weakly supervised anomaly detection, and take maximum advantage of these well-developed classifiers. For this purpose, we devise a graph convolutional network to correct noisy labels. Based upon feature similarity and temporal consistency, our network propagates supervisory signals from high-confidence snippets to low-confidence ones. In this manner, the network is capable of providing cleaned supervision for action classifiers. During the test phase, we only need to obtain snippet-wise predictions from the action classifier without any extra post-processing. Extensive experiments on 3 datasets at different scales with 2 types of action classifiers demonstrate the efficacy of our method. Remarkably, we obtain the frame-level AUC score of 82.12% on UCF-Crime.
In this paper, we propose a deep reinforcement learning framework called GCOMB to learn algorithms that can solve combinatorial problems over large graphs. GCOMB mimics the greedy algorithm in the original problem and incrementally constructs a solution. The proposed framework utilizes Graph Convolutional Network (GCN) to generate node embeddings that predicts the potential nodes in the solution set from the entire node set. These embeddings enable an efficient training process to learn the greedy policy via Q-learning. Through extensive evaluation on several real and synthetic datasets containing up to a million nodes, we establish that GCOMB is up to 41% better than the state of the art, up to seven times faster than the greedy algorithm, robust and scalable to large dynamic networks.
Machine learning techniques have deeply rooted in our everyday life. However, since it is knowledge- and labor-intensive to pursue good learning performance, human experts are heavily involved in every aspect of machine learning. In order to make machine learning techniques easier to apply and reduce the demand for experienced human experts, automated machine learning (AutoML) has emerged as a hot topic with both industrial and academic interest. In this paper, we provide an up to date survey on AutoML. First, we introduce and define the AutoML problem, with inspiration from both realms of automation and machine learning. Then, we propose a general AutoML framework that not only covers most existing approaches to date but also can guide the design for new methods. Subsequently, we categorize and review the existing works from two aspects, i.e., the problem setup and the employed techniques. Finally, we provide a detailed analysis of AutoML approaches and explain the reasons underneath their successful applications. We hope this survey can serve as not only an insightful guideline for AutoML beginners but also an inspiration for future research.
The potential of graph convolutional neural networks for the task of zero-shot learning has been demonstrated recently. These models are highly sample efficient as related concepts in the graph structure share statistical strength allowing generalization to new classes when faced with a lack of data. However, knowledge from distant nodes can get diluted when propagating through intermediate nodes, because current approaches to zero-shot learning use graph propagation schemes that perform Laplacian smoothing at each layer. We show that extensive smoothing does not help the task of regressing classifier weights in zero-shot learning. In order to still incorporate information from distant nodes and utilize the graph structure, we propose an Attentive Dense Graph Propagation Module (ADGPM). ADGPM allows us to exploit the hierarchical graph structure of the knowledge graph through additional connections. These connections are added based on a node's relationship to its ancestors and descendants and an attention scheme is further used to weigh their contribution depending on the distance to the node. Finally, we illustrate that finetuning of the feature representation after training the ADGPM leads to considerable improvements. Our method achieves competitive results, outperforming previous zero-shot learning approaches.
We study the problem of learning to reason in large scale knowledge graphs (KGs). More specifically, we describe a novel reinforcement learning framework for learning multi-hop relational paths: we use a policy-based agent with continuous states based on knowledge graph embeddings, which reasons in a KG vector space by sampling the most promising relation to extend its path. In contrast to prior work, our approach includes a reward function that takes the accuracy, diversity, and efficiency into consideration. Experimentally, we show that our proposed method outperforms a path-ranking based algorithm and knowledge graph embedding methods on Freebase and Never-Ending Language Learning datasets.