亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We study the top-$k$ selection problem under the differential privacy model: $m$ items are rated according to votes of a set of clients. We consider a setting in which algorithms can retrieve data via a sequence of accesses, each either a random access or a sorted access; the goal is to minimize the total number of data accesses. Our algorithm requires only $O(\sqrt{mk})$ expected accesses: to our knowledge, this is the first sublinear data-access upper bound for this problem. Accompanying this, we develop the first lower bounds for the problem, in three settings: only random accesses; only sorted acceses; a sequence of accesses of either kind. We show that, to avoid $\Omega(m)$ access cost, supporting \emph{either} kind of access, i.e. the freedom to mix, is necessary, and that in this case our algorithm's access cost is almost optimal.

相關內容

Representing complex objects with basic geometric primitives has long been a topic in computer vision. Primitive-based representations have the merits of compactness and computational efficiency in higher-level tasks such as physics simulation, collision checking, and robotic manipulation. Unlike previous works which extract polygonal meshes from a signed distance function (SDF), in this paper, we present a novel method, named Marching-Primitives, to obtain a primitive-based abstraction directly from an SDF. Our method grows geometric primitives (such as superquadrics) iteratively by analyzing the connectivity of voxels while marching at different levels of signed distance. For each valid connected volume of interest, we march on the scope of voxels from which a primitive is able to be extracted in a probabilistic sense and simultaneously solve for the parameters of the primitive to capture the underlying local geometry. We evaluate the performance of our method on both synthetic and real-world datasets. The results show that the proposed method outperforms the state-of-the-art in terms of accuracy, and is directly generalizable among different categories and scales. The code is open-sourced at //github.com/ChirikjianLab/Marching-Primitives.git.

In this paper, we improve the regret bound for online kernel selection under bandit feedback. Previous algorithm enjoys a $O((\Vert f\Vert^2_{\mathcal{H}_i}+1)K^{\frac{1}{3}}T^{\frac{2}{3}})$ expected bound for Lipschitz loss functions. We prove two types of regret bounds improving the previous bound. For smooth loss functions, we propose an algorithm with a $O(U^{\frac{2}{3}}K^{-\frac{1}{3}}(\sum^K_{i=1}L_T(f^\ast_i))^{\frac{2}{3}})$ expected bound where $L_T(f^\ast_i)$ is the cumulative losses of optimal hypothesis in $\mathbb{H}_{i}=\{f\in\mathcal{H}_i:\Vert f\Vert_{\mathcal{H}_i}\leq U\}$. The data-dependent bound keeps the previous worst-case bound and is smaller if most of candidate kernels match well with the data. For Lipschitz loss functions, we propose an algorithm with a $O(U\sqrt{KT}\ln^{\frac{2}{3}}{T})$ expected bound asymptotically improving the previous bound. We apply the two algorithms to online kernel selection with time constraint and prove new regret bounds matching or improving the previous $O(\sqrt{T\ln{K}} +\Vert f\Vert^2_{\mathcal{H}_i}\max\{\sqrt{T},\frac{T}{\sqrt{\mathcal{R}}}\})$ expected bound where $\mathcal{R}$ is the time budget. Finally, we empirically verify our algorithms on online regression and classification tasks.

In this paper, we focus on the construction methods based MWD for polar codes to improve the performance with successive cancellation list (SCL) decoding. We first propose an ordered and nested reliability sequence, namely MWD sequence, to improve the ML performance of polar codes and apply fast construction without the original channel information. In the MWD sequence, the synthetic channels are sorted by the partial MWD which is used to evaluate the influence of information bit on MWD and we prove the MWD sequence is the optimum sequence under ML decoding. Then, since the list size of SCL decoding is limited, we introduce an entropy constraint to establish a relationship between the list size and the ML performance and propose a heuristic and greedy construction method named bit grouping reorder based MWD (BGR-MWD) algorithm. In the algorithm, we divide the synthetic channels into groups by the partial MWD and greedily reorder the synthetic channels in some groups until the entropy constraint is satisfied. The simulation results show the MWD sequence is suitable for constructing polar codes with short code length. Meanwhile, the BGR-MWD algorithm has superior performance over the traditional construction methods for long code length.

The success of a football team depends on various individual skills and performances of the selected players as well as how cohesively they perform. This work proposes a two-stage process for selecting optimal playing eleven of a football team from its pool of available players. In the first stage, for the reference team, a LASSO-induced modified trinomial logistic regression model is derived to analyze the probabilities of the three possible outcomes. The model takes into account strengths of the players in the team as well as those of the opponent, home advantage, and also the effects of individual players and player combinations beyond the recorded performances of these players. Careful use of the LASSO technique acts as an appropriate enabler of the player selection exercise while keeping the number of variables at a reasonable level. Then, in the second stage, a GRASP-type meta-heuristic is implemented for the team selection which maximizes the probability of win for the team. The work is illustrated with English Premier League data from 2008/09 to 2015/16. The application demonstrates that the model in the first stage furnishes valuable insights about the deciding factors for different teams whereas the optimization steps can be effectively used to determine the best possible starting lineup under various circumstances. Based on the adopted model and methodology, we propose a measure of efficiency in team selection by the team management and analyze the performance of EPL teams on this front.

In this paper, we show that Graph Isomorphism (GI) is not $\textsf{AC}^{0}$-reducible to several problems, including the Latin Square Isotopy problem, isomorphism testing of several families of Steiner designs, and isomorphism testing of conference graphs. As a corollary, we obtain that GI is not $\textsf{AC}^{0}$-reducible to isomorphism testing of Latin square graphs and strongly regular graphs arising from special cases of Steiner $2$-designs. We accomplish this by showing that the generator-enumeration technique for each of these problems can be implemented in $\beta_{2}\textsf{FOLL}$, which cannot compute Parity (Chattopadhyay, Tor\'an, & Wagner, ACM Trans. Comp. Theory, 2013).

Learning on big data brings success for artificial intelligence (AI), but the annotation and training costs are expensive. In future, learning on small data is one of the ultimate purposes of AI, which requires machines to recognize objectives and scenarios relying on small data as humans. A series of machine learning models is going on this way such as active learning, few-shot learning, deep clustering. However, there are few theoretical guarantees for their generalization performance. Moreover, most of their settings are passive, that is, the label distribution is explicitly controlled by one specified sampling scenario. This survey follows the agnostic active sampling under a PAC (Probably Approximately Correct) framework to analyze the generalization error and label complexity of learning on small data using a supervised and unsupervised fashion. With these theoretical analyses, we categorize the small data learning models from two geometric perspectives: the Euclidean and non-Euclidean (hyperbolic) mean representation, where their optimization solutions are also presented and discussed. Later, some potential learning scenarios that may benefit from small data learning are then summarized, and their potential learning scenarios are also analyzed. Finally, some challenging applications such as computer vision, natural language processing that may benefit from learning on small data are also surveyed.

Unsupervised domain adaptation has recently emerged as an effective paradigm for generalizing deep neural networks to new target domains. However, there is still enormous potential to be tapped to reach the fully supervised performance. In this paper, we present a novel active learning strategy to assist knowledge transfer in the target domain, dubbed active domain adaptation. We start from an observation that energy-based models exhibit free energy biases when training (source) and test (target) data come from different distributions. Inspired by this inherent mechanism, we empirically reveal that a simple yet efficient energy-based sampling strategy sheds light on selecting the most valuable target samples than existing approaches requiring particular architectures or computation of the distances. Our algorithm, Energy-based Active Domain Adaptation (EADA), queries groups of targe data that incorporate both domain characteristic and instance uncertainty into every selection round. Meanwhile, by aligning the free energy of target data compact around the source domain via a regularization term, domain gap can be implicitly diminished. Through extensive experiments, we show that EADA surpasses state-of-the-art methods on well-known challenging benchmarks with substantial improvements, making it a useful option in the open world. Code is available at //github.com/BIT-DA/EADA.

Graph Neural Networks (GNNs) have been studied from the lens of expressive power and generalization. However, their optimization properties are less well understood. We take the first step towards analyzing GNN training by studying the gradient dynamics of GNNs. First, we analyze linearized GNNs and prove that despite the non-convexity of training, convergence to a global minimum at a linear rate is guaranteed under mild assumptions that we validate on real-world graphs. Second, we study what may affect the GNNs' training speed. Our results show that the training of GNNs is implicitly accelerated by skip connections, more depth, and/or a good label distribution. Empirical results confirm that our theoretical results for linearized GNNs align with the training behavior of nonlinear GNNs. Our results provide the first theoretical support for the success of GNNs with skip connections in terms of optimization, and suggest that deep GNNs with skip connections would be promising in practice.

Modern neural network training relies heavily on data augmentation for improved generalization. After the initial success of label-preserving augmentations, there has been a recent surge of interest in label-perturbing approaches, which combine features and labels across training samples to smooth the learned decision surface. In this paper, we propose a new augmentation method that leverages the first and second moments extracted and re-injected by feature normalization. We replace the moments of the learned features of one training image by those of another, and also interpolate the target labels. As our approach is fast, operates entirely in feature space, and mixes different signals than prior methods, one can effectively combine it with existing augmentation methods. We demonstrate its efficacy across benchmark data sets in computer vision, speech, and natural language processing, where it consistently improves the generalization performance of highly competitive baseline networks.

The era of big data provides researchers with convenient access to copious data. However, people often have little knowledge about it. The increasing prevalence of big data is challenging the traditional methods of learning causality because they are developed for the cases with limited amount of data and solid prior causal knowledge. This survey aims to close the gap between big data and learning causality with a comprehensive and structured review of traditional and frontier methods and a discussion about some open problems of learning causality. We begin with preliminaries of learning causality. Then we categorize and revisit methods of learning causality for the typical problems and data types. After that, we discuss the connections between learning causality and machine learning. At the end, some open problems are presented to show the great potential of learning causality with data.

北京阿比特科技有限公司