亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We present a new approach to understanding the relationship between loss curvature and input-output model behaviour in deep learning. Specifically, we use existing empirical analyses of the spectrum of deep network loss Hessians to ground an ansatz tying together the loss Hessian and the input-output Jacobian of a deep neural network over training samples throughout training. We then prove a series of theoretical results which quantify the degree to which the input-output Jacobian of a model approximates its Lipschitz norm over a data distribution, and deduce a novel generalisation bound in terms of the empirical Jacobian. We use our ansatz, together with our theoretical results, to give a new account of the recently observed progressive sharpening phenomenon, as well as the generalisation properties of flat minima. Experimental evidence is provided to validate our claims.

相關內容

Optimum distance flag codes (ODFCs), as special flag codes, have received a lot of attention due to its application in random network coding. In 2021, Alonso-Gonz\'{a}lez et al. constructed optimal $(n,\mathcal{A})$-ODFC for $\mathcal {A}\subseteq \{1,2,\ldots,k,n-k,\ldots,n-1\}$ with $k\in \mathcal A$ and $k|n$. In this paper, we introduce a new construction of $(n,\mathcal A)_q$-ODFCs by maximum rank-metric codes. It is proved that there is an $(n,\mathcal{A})$-ODFC of size $\frac{q^n-q^{k+r}}{q^k-1}+1$ for any $\mathcal{A}\subseteq\{1,2,\ldots,k,n-k,\ldots,n-1\}$ with $\mathcal A\cap \{k,n-k\}\neq\emptyset$, where $r\equiv n\pmod k$ and $0\leq r<k$. Furthermore, when $k>\frac{q^r-1}{q-1}$, this $(n,\mathcal A)_q$-ODFC is optimal. Specially, when $r=0$, Alonso-Gonz\'{a}lez et al.'s result is also obtained.

The majority of data assimilation (DA) methods in the geosciences are based on Gaussian assumptions. While these assumptions facilitate efficient algorithms, they cause analysis biases and subsequent forecast degradations. Non-parametric, particle-based DA algorithms have superior accuracy, but their application to high-dimensional models still poses operational challenges. Drawing inspiration from recent advances in the field of generative artificial intelligence (AI), this article introduces a new nonlinear estimation theory which attempts to bridge the existing gap in DA methodology. Specifically, a Conjugate Transform Filter (CTF) is derived and shown to generalize the celebrated Kalman filter to arbitrarily non-Gaussian distributions. The new filter has several desirable properties, such as its ability to preserve statistical relationships in the prior state and convergence to highly accurate observations. An ensemble approximation of the new theory (ECTF) is also presented and validated using idealized statistical experiments that feature bounded quantities with non-Gaussian distributions, a prevalent challenge in Earth system models. Results from these experiments indicate that the greatest benefits from ECTF occur when observation errors are small relative to the forecast uncertainty and when state variables exhibit strong nonlinear dependencies. Ultimately, the new filtering theory offers exciting avenues for improving conventional DA algorithms through their principled integration with AI techniques.

State-of-the-art machine learning models can be vulnerable to very small input perturbations that are adversarially constructed. Adversarial training is an effective approach to defend against it. Formulated as a min-max problem, it searches for the best solution when the training data were corrupted by the worst-case attacks. Linear models are among the simple models where vulnerabilities can be observed and are the focus of our study. In this case, adversarial training leads to a convex optimization problem which can be formulated as the minimization of a finite sum. We provide a comparative analysis between the solution of adversarial training in linear regression and other regularization methods. Our main findings are that: (A) Adversarial training yields the minimum-norm interpolating solution in the overparameterized regime (more parameters than data), as long as the maximum disturbance radius is smaller than a threshold. And, conversely, the minimum-norm interpolator is the solution to adversarial training with a given radius. (B) Adversarial training can be equivalent to parameter shrinking methods (ridge regression and Lasso). This happens in the underparametrized region, for an appropriate choice of adversarial radius and zero-mean symmetrically distributed covariates. (C) For $\ell_\infty$-adversarial training -- as in square-root Lasso -- the choice of adversarial radius for optimal bounds does not depend on the additive noise variance. We confirm our theoretical findings with numerical examples.

Engineers are often faced with the decision to select the most appropriate model for simulating the behavior of engineered systems, among a candidate set of models. Experimental monitoring data can generate significant value by supporting engineers toward such decisions. Such data can be leveraged within a Bayesian model updating process, enabling the uncertainty-aware calibration of any candidate model. The model selection task can subsequently be cast into a problem of decision-making under uncertainty, where one seeks to select the model that yields an optimal balance between the reward associated with model precision, in terms of recovering target Quantities of Interest (QoI), and the cost of each model, in terms of complexity and compute time. In this work, we examine the model selection task by means of Bayesian decision theory, under the prism of availability of models of various refinements, and thus varying levels of fidelity. In doing so, we offer an exemplary application of this framework on the IMAC-MVUQ Round-Robin Challenge. Numerical investigations show various outcomes of model selection depending on the target QoI.

Indoor scene generation aims at creating shape-compatible, style-consistent furniture arrangements within a spatially reasonable layout. However, most existing approaches primarily focus on generating plausible furniture layouts without incorporating specific details related to individual furniture pieces. To address this limitation, we propose a two-stage model integrating shape priors into the indoor scene generation by encoding furniture as anchor latent representations. In the first stage, we employ discrete vector quantization to encode furniture pieces as anchor-latents. Based on the anchor-latents representation, the shape and location information of the furniture was characterized by a concatenation of location, size, orientation, class, and our anchor latent. In the second stage, we leverage a transformer model to predict indoor scenes autoregressively. Thanks to incorporating the proposed anchor-latents representations, our generative model produces shape-compatible and style-consistent furniture arrangements and synthesis furniture in diverse shapes. Furthermore, our method facilitates various human interaction applications, such as style-consistent scene completion, object mismatch correction, and controllable object-level editing. Experimental results on the 3D-Front dataset demonstrate that our approach can generate more consistent and compatible indoor scenes compared to existing methods, even without shape retrieval. Additionally, extensive ablation studies confirm the effectiveness of our design choices in the indoor scene generation model.

As models grow larger and more complex, achieving better off-sample generalization with minimal trial-and-error is critical to the reliability and economy of machine learning workflows. As a proxy for the well-studied heuristic of seeking "flat" local minima, gradient regularization is a natural avenue, and first-order approximations such as Flooding and sharpness-aware minimization (SAM) have received significant attention, but their performance depends critically on hyperparameters (flood threshold and neighborhood radius, respectively) that are non-trivial to specify in advance. In order to develop a procedure which is more resilient to misspecified hyperparameters, with the hard-threshold "ascent-descent" switching device used in Flooding as motivation, we propose a softened, pointwise mechanism called SoftAD that downweights points on the borderline, limits the effects of outliers, and retains the ascent-descent effect. We contrast formal stationarity guarantees with those for Flooding, and empirically demonstrate how SoftAD can realize classification accuracy competitive with SAM and Flooding while maintaining a much smaller loss generalization gap and model norm. Our empirical tests range from simple binary classification on the plane to image classification using neural networks with millions of parameters; the key trends are observed across all datasets and models studied, and suggest a potential new approach to implicit regularization.

This work is concerned with cone-beam computed tomography with circular source trajectory, where the reconstruction inverse problem requires an accurate knowledge of source, detector and rotational axis relative positions and orientations. We address this problem as a preceding step of the reconstruction process directly from the acquired projections. The method estimates both the detector shift (orthogonal to focal and rotational axes) and the in-plane detector rotation, relative to source and rotational axis. The obtained algorithm is based on a fan-beam symmetry condition and the variable projection optimization approach with a low computational cost. Therefore, the alignment problem for fan-beam tomography is addressed as well. The methods are validated with simulated and real industrial tomographic data with code examples available for both fan- and cone-beam geometries.

This work studies the parameter identification problem of a generalized non-cooperative game, where each player's cost function is influenced by an observable signal and some unknown parameters. We consider the scenario where equilibrium of the game at some observable signals can be observed with noises, whereas our goal is to identify the unknown parameters with the observed data. Assuming that the observable signals and the corresponding noise-corrupted equilibriums are acquired sequentially, we construct this parameter identification problem as online optimization and introduce a novel online parameter identification algorithm. To be specific, we construct a regularized loss function that balances conservativeness and correctiveness, where the conservativeness term ensures that the new estimates do not deviate significantly from the current estimates, while the correctiveness term is captured by the Karush-Kuhn-Tucker conditions. We then prove that when the players' cost functions are linear with respect to the unknown parameters and the learning rate of the online parameter identification algorithm satisfies \mu_k \propto 1/\sqrt{k}, along with other assumptions, the regret bound of the proposed algorithm is O(\sqrt{K}). Finally, we conduct numerical simulations on a Nash-Cournot problem to demonstrate that the performance of the online identification algorithm is comparable to that of the offline setting.

Spectral independence is a recently-developed framework for obtaining sharp bounds on the convergence time of the classical Glauber dynamics. This new framework has yielded optimal $O(n \log n)$ sampling algorithms on bounded-degree graphs for a large class of problems throughout the so-called uniqueness regime, including, for example, the problems of sampling independent sets, matchings, and Ising-model configurations. Our main contribution is to relax the bounded-degree assumption that has so far been important in establishing and applying spectral independence. Previous methods for avoiding degree bounds rely on using $L^p$-norms to analyse contraction on graphs with bounded connective constant (Sinclair, Srivastava, Yin; FOCS'13). The non-linearity of $L^p$-norms is an obstacle to applying these results to bound spectral independence. Our solution is to capture the $L^p$-analysis recursively by amortising over the subtrees of the recurrence used to analyse contraction. Our method generalises previous analyses that applied only to bounded-degree graphs. As a main application of our techniques, we consider the random graph $G(n,d/n)$, where the previously known algorithms run in time $n^{O(\log d)}$ or applied only to large $d$. We refine these algorithmic bounds significantly, and develop fast $n^{1+o(1)}$ algorithms based on Glauber dynamics that apply to all $d$, throughout the uniqueness regime.

We revisit the task of quantum state redistribution in the one-shot setting, and design a protocol for this task with communication cost in terms of a measure of distance from quantum Markov chains. More precisely, the distance is defined in terms of quantum max-relative entropy and quantum hypothesis testing entropy. Our result is the first to operationally connect quantum state redistribution and quantum Markov chains, and can be interpreted as an operational interpretation for a possible one-shot analogue of quantum conditional mutual information. The communication cost of our protocol is lower than all previously known ones and asymptotically achieves the well-known rate of quantum conditional mutual information. Thus, our work takes a step towards the important open question of near-optimal characterization of the one-shot quantum state redistribution.

北京阿比特科技有限公司