In the kernelized bandit problem, a learner aims to sequentially compute the optimum of a function lying in a reproducing kernel Hilbert space given only noisy evaluations at sequentially chosen points. In particular, the learner aims to minimize regret, which is a measure of the suboptimality of the choices made. Arguably the most popular algorithm is the Gaussian Process Upper Confidence Bound (GP-UCB) algorithm, which involves acting based on a simple linear estimator of the unknown function. Despite its popularity, existing analyses of GP-UCB give a suboptimal regret rate, which fails to be sublinear for many commonly used kernels such as the Mat\'ern kernel. This has led to a longstanding open question: are existing regret analyses for GP-UCB tight, or can bounds be improved by using more sophisticated analytical techniques? In this work, we resolve this open question and show that GP-UCB enjoys nearly optimal regret. In particular, our results yield sublinear regret rates for the Mat\'ern kernel, improving over the state-of-the-art analyses and partially resolving a COLT open problem posed by Vakili et al. Our improvements rely on a key technical contribution -- regularizing kernel ridge estimators in proportion to the smoothness of the underlying kernel $k$. Applying this key idea together with a largely overlooked concentration result in separable Hilbert spaces (for which we provide an independent, simplified derivation), we are able to provide a tighter analysis of the GP-UCB algorithm.
Existing statistical learning guarantees for general kernel regressors often yield loose bounds when used with finite-rank kernels. Yet, finite-rank kernels naturally appear in several machine learning problems, e.g.\ when fine-tuning a pre-trained deep neural network's last layer to adapt it to a novel task when performing transfer learning. We address this gap for finite-rank kernel ridge regression (KRR) by deriving sharp non-asymptotic upper and lower bounds for the KRR test error of any finite-rank KRR. Our bounds are tighter than previously derived bounds on finite-rank KRR, and unlike comparable results, they also remain valid for any regularization parameters.
The discrete logarithm problem is a fundamental challenge in number theory with significant implications for cryptographic protocols. In this paper, we investigate the limitations of gradient-based methods for learning the parity bit of the discrete logarithm in finite cyclic groups of prime order. Our main result, supported by theoretical analysis and empirical verification, reveals the concentration of the gradient of the loss function around a fixed point, independent of the logarithm's base used. This concentration property leads to a restricted ability to learn the parity bit efficiently using gradient-based methods, irrespective of the complexity of the network architecture being trained. Our proof relies on Boas-Bellman inequality in inner product spaces and it involves establishing approximate orthogonality of discrete logarithm's parity bit functions through the spectral norm of certain matrices. Empirical experiments using a neural network-based approach further verify the limitations of gradient-based learning, demonstrating the decreasing success rate in predicting the parity bit as the group order increases.
Minimum Bayes Risk (MBR) decoding is a method for choosing the outputs of a machine learning system based not on the output with the highest probability, but the output with the lowest risk (expected error) among multiple candidates. It is a simple but powerful method: for an additional cost at inference time, MBR provides reliable several-point improvements across metrics for a wide variety of tasks without any additional data or training. Despite this, MBR is not frequently applied in NLP works, and knowledge of the method itself is limited. We first provide an introduction to the method and the recent literature. We show that several recent methods that do not reference MBR can be written as special cases of MBR; this reformulation provides additional theoretical justification for the performance of these methods, explaining some results that were previously only empirical. We provide theoretical and empirical results about the effectiveness of various MBR variants and make concrete recommendations for the application of MBR in NLP models, including future directions in this area.
Neural abstractions have been recently introduced as formal approximations of complex, nonlinear dynamical models. They comprise a neural ODE and a certified upper bound on the error between the abstract neural network and the concrete dynamical model. So far neural abstractions have exclusively been obtained as neural networks consisting entirely of $ReLU$ activation functions, resulting in neural ODE models that have piecewise affine dynamics, and which can be equivalently interpreted as linear hybrid automata. In this work, we observe that the utility of an abstraction depends on its use: some scenarios might require coarse abstractions that are easier to analyse, whereas others might require more complex, refined abstractions. We therefore consider neural abstractions of alternative shapes, namely either piecewise constant or nonlinear non-polynomial (specifically, obtained via sigmoidal activations). We employ formal inductive synthesis procedures to generate neural abstractions that result in dynamical models with these semantics. Empirically, we demonstrate the trade-off that these different neural abstraction templates have vis-a-vis their precision and synthesis time, as well as the time required for their safety verification (done via reachability computation). We improve existing synthesis techniques to enable abstraction of higher-dimensional models, and additionally discuss the abstraction of complex neural ODEs to improve the efficiency of reachability analysis for these models.
The uniform one-dimensional fragment of first-order logic was introduced a few years ago as a generalization of the two-variable fragment of first-order logic to contexts involving relations of arity greater than two. Quantifiers in this logic are used in blocks, each block consisting only of existential quantifiers or only of universal quantifiers. In this paper we consider the possibility of mixing quantifiers in blocks. We identify a non-trivial variation of the logic with mixed blocks of quantifiers which retains some good properties of the two-variable fragment and of the uniform one-dimensional fragment: it has the finite (exponential) model property and hence decidable, NExpTime-complete satisfiability problem.
We show that it is possible to learn an open-loop policy in simulation for the dynamic manipulation of a deformable linear object (DLO) -- e.g., a rope, wire, or cable -- that can be executed by a real robot without additional training. Our method is enabled by integrating an existing state-of-the-art DLO model (Discrete Elastic Rods) with MuJoCo, a robot simulator. We describe how this integration was done, check that validation results produced in simulation match what we expect from analysis of the physics, and apply policy optimization to train an open-loop policy from data collected only in simulation that uses a robot arm to fling a wire precisely between two obstacles. This policy achieves a success rate of 76.7% when executed by a real robot in hardware experiments without additional training on the real task.
In previous literature, backward error analysis was used to find ordinary differential equations (ODEs) approximating the gradient descent trajectory. It was found that finite step sizes implicitly regularize solutions because terms appearing in the ODEs penalize the two-norm of the loss gradients. We prove that the existence of similar implicit regularization in RMSProp and Adam depends on their hyperparameters and the training stage, but with a different "norm" involved: the corresponding ODE terms either penalize the (perturbed) one-norm of the loss gradients or, on the contrary, hinder its decrease (the latter case being typical). We also conduct numerical experiments and discuss how the proven facts can influence generalization.
We study the effect of tokenization on gender bias in machine translation, an aspect that has been largely overlooked in previous works. Specifically, we focus on the interactions between the frequency of gendered profession names in training data, their representation in the subword tokenizer's vocabulary, and gender bias. We observe that female and non-stereotypical gender inflections of profession names (e.g., Spanish "doctora" for "female doctor") tend to be split into multiple subword tokens. Our results indicate that the imbalance of gender forms in the model's training corpus is a major factor contributing to gender bias and has a greater impact than subword splitting. We show that analyzing subword splits provides good estimates of gender-form imbalance in the training data and can be used even when the corpus is not publicly available. We also demonstrate that fine-tuning just the token embedding layer can decrease the gap in gender prediction accuracy between female and male forms without impairing the translation quality.
The optimal branch number of MDS matrices has established their prominence in the design of diffusion layers for various block ciphers and hash functions. Consequently, several matrix structures have been proposed for designing MDS matrices, including Hadamard and circulant matrices. In this paper, we first provide the count of Hadamard MDS matrices of order $4$ over the field $\mathbb{F}_{2^r}$. Subsequently, we present the counts of order $2$ MDS matrices and order $2$ involutory MDS matrices over the field $\mathbb{F}_{2^r}$. Finally, leveraging these counts of order $2$ matrices, we derive an upper bound for the number of all involutory MDS matrices of order $4$ over $\mathbb{F}_{2^r}$.
The accurate representation and prediction of physical phenomena through numerical computer codes remains to be a vast and intricate interdisciplinary topic of research. Especially within the last decades, there has been a considerable push toward high performance numerical schemes to solve partial differential equations (PDEs) from the applied mathematics and numerics community. The resulting landscape of choices regarding numerical schemes for a given system of PDEs can thus easily appear daunting for an application expert that is familiar with the relevant physics, but not necessarily with the numerics. Bespoke high performance schemes in particular pose a substantial hurdle for domain scientists regarding their theory and implementation. Here, we propose a unifying scheme for grid based approximation methods to address this issue. We introduce some well defined restrictions to systematically guide an application expert through the process of classifying a given multiphysics problem, identifying suitable numerical schemes and implementing them. We introduce a fixed set of input parameters, amongst them for example the governing equations and the hardware configuration. This method not only helps to identify and assemble suitable schemes, but enables the unique combination of multiple methods on a per field basis. We exemplarily demonstrate this process and its effectiveness using different approaches and systematically show how one should exploit some given properties of a PDE problem to arrive at an efficient compound discretisation.