亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

For a set $Q$ of points in the plane and a real number $\delta \ge 0$, let $\mathbb{G}_\delta(Q)$ be the graph defined on $Q$ by connecting each pair of points at distance at most $\delta$. We consider the connectivity of $\mathbb{G}_\delta(Q)$ in the best scenario when the location of a few of the points is uncertain, but we know for each uncertain point a line segment that contains it. More precisely, we consider the following optimization problem: given a set $P$ of $n-k$ points in the plane and a set $S$ of $k$ line segments in the plane, find the minimum $\delta\ge 0$ with the property that we can select one point $p_s\in s$ for each segment $s\in S$ and the corresponding graph $\mathbb{G}_\delta ( P\cup \{ p_s\mid s\in S\})$ is connected. It is known that the problem is NP-hard. We provide an algorithm to exactly compute an optimal solution in $O(f(k) n \log n)$ time, for a computable function $f(\cdot)$. This implies that the problem is FPT when parameterized by $k$. The best previous algorithm uses $O((k!)^k k^{k+1}\cdot n^{2k})$ time and computes the solution up to fixed precision.

相關內容

Let $X$ be a $d$-dimensional simplicial complex. A function $F\colon X(k)\to \{0,1\}^k$ is said to be a direct product function if there exists a function $f\colon X(1)\to \{0,1\}$ such that $F(\sigma) = (f(\sigma_1), \ldots, f(\sigma_k))$ for each $k$-face $\sigma$. In an effort to simplify components of the PCP theorem, Goldreich and Safra introduced the problem of direct product testing, which asks whether one can test if $F\colon X(k)\to \{0,1\}^k$ is correlated with a direct product function by querying $F$ on only $2$ inputs. Dinur and Kaufman conjectured that there exist bounded degree complexes with a direct product test in the small soundness regime. We resolve their conjecture by showing that for all $\delta>0$, there exists a family of high-dimensional expanders with degree $O_{\delta}(1)$ and a $2$-query direct product tester with soundness $\delta$. We use the characterization given by a subset of the authors and independently by Dikstein and Dinur, who showed that some form of non-Abelian coboundary expansion (which they called "Unique-Games coboundary expansion") is a necessary and sufficient condition for a complex to admit such direct product testers. Our main technical contribution is a general technique for showing coboundary expansion of complexes with coefficients in a non-Abelian group. This allows us to prove that the high dimensional expanders constructed by Chapman and Lubotzky satisfies the necessary conditions, thus admitting a 2-query direct product tester with small soundness.

The volume function V(t) of a compact set S\in R^d is just the Lebesgue measure of the set of points within a distance to S not larger than t. According to some classical results in geometric measure theory, the volume function turns out to be a polynomial, at least in a finite interval, under a quite intuitive, easy to interpret, sufficient condition (called ``positive reach'') which can be seen as an extension of the notion of convexity. However, many other simple sets, not fulfilling the positive reach condition, have also a polynomial volume function. To our knowledge, there is no general, simple geometric description of such sets. Still, the polynomial character of $V(t)$ has some relevant consequences since the polynomial coefficients carry some useful geometric information. In particular, the constant term is the volume of S and the first order coefficient is the boundary measure (in Minkowski's sense). This paper is focused on sets whose volume function is polynomial on some interval starting at zero, whose length (that we call ``polynomial reach'') might be unknown. Our main goal is to approximate such polynomial reach by statistical means, using only a large enough random sample of points inside S. The practical motivation is simple: when the value of the polynomial reach , or rather a lower bound for it, is approximately known, the polynomial coefficients can be estimated from the sample points by using standard methods in polynomial approximation. As a result, we get a quite general method to estimate the volume and boundary measure of the set, relying only on an inner sample of points and not requiring the use any smoothing parameter. This paper explores the theoretical and practical aspects of this idea.

In Linear Logic ($\mathsf{LL}$), the exponential modality $!$ brings forth a distinction between non-linear proofs and linear proofs, where linear means using an argument exactly once. Differential Linear Logic ($\mathsf{DiLL}$) is an extension of Linear Logic which includes additional rules for $!$ which encode differentiation and the ability of linearizing proofs. On the other hand, Graded Linear Logic ($\mathsf{GLL}$) is a variation of Linear Logic in such a way that $!$ is now indexed over a semiring $R$. This $R$-grading allows for non-linear proofs of degree $r \in R$, such that the linear proofs are of degree $1 \in R$. There has been recent interest in combining these two variations of $\mathsf{LL}$ together and developing Graded Differential Linear Logic ($\mathsf{GDiLL}$). In this paper we present a sequent calculus for $\mathsf{GDiLL}$, as well as introduce its categorical semantics, which we call graded differential categories, using both coderelictions and deriving transformations. We prove that symmetric powers always give graded differential categories, and provide other examples of graded differential categories. We also discuss graded versions of (monoidal) coalgebra modalities, additive bialgebra modalities, and the Seely isomorphisms, as well as their implementations in the sequent calculus of $\mathsf{GDiLL}$.

In this paper we develop a classical algorithm of complexity $O(K \, 2^n)$ to simulate parametrized quantum circuits (PQCs) of $n$ qubits, where $K$ is the total number of one-qubit and two-qubit control gates. The algorithm is developed by finding $2$-sparse unitary matrices of order $2^n$ explicitly corresponding to any single-qubit and two-qubit control gates in an $n$-qubit system. Finally, we determine analytical expression of Hamiltonians for any such gate and consequently a local Hamiltonian decomposition of any PQC is obtained. All results are validated with numerical simulations.

If $G$ is a group, we say a subset $S$ of $G$ is product-free if the equation $xy=z$ has no solutions with $x,y,z \in S$. For $D \in \mathbb{N}$, a group $G$ is said to be $D$-quasirandom if the minimal dimension of a nontrivial complex irreducible representation of $G$ is at least $D$. Gowers showed that in a $D$-quasirandom finite group $G$, the maximal size of a product-free set is at most $|G|/D^{1/3}$. This disproved a longstanding conjecture of Babai and S\'os from 1985. For the special unitary group, $G=SU(n)$, Gowers observed that his argument yields an upper bound of $n^{-1/3}$ on the measure of a measurable product-free subset. In this paper, we improve Gowers' upper bound to $\exp(-cn^{1/3})$, where $c>0$ is an absolute constant. In fact, we establish something stronger, namely, product-mixing for measurable subsets of $SU(n)$ with measure at least $\exp(-cn^{1/3})$; for this product-mixing result, the $n^{1/3}$ in the exponent is sharp. Our approach involves introducing novel hypercontractive inequalities, which imply that the non-Abelian Fourier spectrum of the indicator function of a small set concentrates on high-dimensional irreducible representations. Our hypercontractive inequalities are obtained via methods from representation theory, harmonic analysis, random matrix theory and differential geometry. We generalize our hypercontractive inequalities from $SU(n)$ to an arbitrary $D$-quasirandom compact connected Lie group for $D$ at least an absolute constant, thereby extending our results on product-free sets to such groups. We also demonstrate various other applications of our inequalities to geometry (viz., non-Abelian Brunn-Minkowski type inequalities), mixing times, and the theory of growth in compact Lie groups.

In this paper we study the Cayley graph $\mathrm{Cay}(S_n,T)$ of the symmetric group $S_n$ generated by a set of transpositions $T$. We show that for $n\geq 5$ the Cayley graph is normal. As a corollary, we show that its automorphism group is a direct product of $S_n$ and the automorphism group of the transposition graph associated to $T$. This provides an affirmative answer to a conjecture raised by Ganesan in arXiv:1703.08109, showing that $\mathrm{Cay}(S_n,T)$ is normal if and only if the transposition graph is not $C_4$ or $K_n$.

The forcing number of a graph with a perfect matching $M$ is the minimum number of edges in $M$ whose endpoints need to be deleted, such that the remaining graph only has a single perfect matching. This number is of great interest in theoretical chemistry, since it conveys information about the structural properties of several interesting molecules. On the other hand, in bipartite graphs the forcing number corresponds to the famous feedback vertex set problem in digraphs. Determining the complexity of finding the smallest forcing number of a given planar graph is still a widely open and important question in this area, originally proposed by Afshani, Hatami, and Mahmoodian in 2004. We take a first step towards the resolution of this question by providing an algorithm that determines the set of all possible forcing numbers of an outerplanar graph in polynomial time. This is the first polynomial-time algorithm concerning this problem for a class of graphs of comparable or greater generality.

In this paper, we investigate the existence of self-dual MRD codes $C\subset L^n$, where $L/F$ is an arbitrary field extension of degree $m\geq n$. We then apply our results to the case of finite fields, and prove that if $m=n$ and $F=\mathbb{F}_q$, a self-dual MRD code exists if and only if $q\equiv n\equiv 3 \ [4].$

The classical Andr\'{a}sfai-Erd\H{o}s-S\'{o}s Theorem states that for $\ell\ge 2$, every $n$-vertex $K_{\ell+1}$-free graph with minimum degree greater than $\frac{3\ell-4}{3\ell-1}n$ must be $\ell$-partite. We establish a simple criterion for $r$-graphs, $r \geq 2$, to exhibit an Andr\'{a}sfai-Erd\H{o}s-S\'{o}s-type property (AES), leading to a classification of most previously studied hypergraph families with this property. For every AES $r$-graph $F$, we present a simple algorithm to decide the $F$-freeness of an $n$-vertex $r$-graph with minimum degree greater than $(\pi(F) - \varepsilon_F)\binom{n}{r-1}$ in time $O(n^r)$, where $\varepsilon_F >0$ is a constant. In particular, for the complete graph $K_{\ell+1}$, we can take $\varepsilon_{K_{\ell+1}} = (3\ell^2-\ell)^{-1}$. Based on a result by Chen-Huang-Kanj-Xia, we show that for every fixed $C > 0$, this problem cannot be solved in time $n^{o(\ell)}$ if we replace $\varepsilon_{K_{\ell+1}}$ with $(C\ell)^{-1}$ unless ETH fails. Furthermore, we establish an algorithm to decide the $K_{\ell+1}$-freeness of an $n$-vertex graph with $\mathrm{ex}(n,K_{\ell+1})-k$ edges in time $(\ell+1)n^2$ for $k \le n/30\ell$ and $\ell \le \sqrt{n/6}$, partially improving upon the recently provided running time of $2.49^k n^{O(1)}$ by Fomin--Golovach--Sagunov--Simonov. Moreover, we show that for every fixed $\delta > 0$, this problem cannot be solved in time $n^{o(\ell)}$ if $k$ is of order $n^{1+\delta}$ unless ETH fails. As an intermediate step, we show that for a specific class of $r$-graphs $F$, the (surjective) $F$-coloring problem can be solved in time $O(n^r)$, provided the input $r$-graph has $n$ vertices and a large minimum degree, refining several previous results.

Let $G$ be an undirected graph. We say that $G$ contains a ladder of length $k$ if the $2 \times (k+1)$ grid graph is an induced subgraph of $G$ that is only connected to the rest of $G$ via its four cornerpoints. We prove that if all the ladders contained in $G$ are reduced to length 4, the treewidth remains unchanged (and that this bound is tight). Our result indicates that, when computing the treewidth of a graph, long ladders can simply be reduced, and that minimal forbidden minors for bounded treewidth graphs cannot contain long ladders. Our result also settles an open problem from algorithmic phylogenetics: the common chain reduction rule, used to simplify the comparison of two evolutionary trees, is treewidth-preserving in the display graph of the two trees.

北京阿比特科技有限公司