亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The volume function V(t) of a compact set S\in R^d is just the Lebesgue measure of the set of points within a distance to S not larger than t. According to some classical results in geometric measure theory, the volume function turns out to be a polynomial, at least in a finite interval, under a quite intuitive, easy to interpret, sufficient condition (called ``positive reach'') which can be seen as an extension of the notion of convexity. However, many other simple sets, not fulfilling the positive reach condition, have also a polynomial volume function. To our knowledge, there is no general, simple geometric description of such sets. Still, the polynomial character of $V(t)$ has some relevant consequences since the polynomial coefficients carry some useful geometric information. In particular, the constant term is the volume of S and the first order coefficient is the boundary measure (in Minkowski's sense). This paper is focused on sets whose volume function is polynomial on some interval starting at zero, whose length (that we call ``polynomial reach'') might be unknown. Our main goal is to approximate such polynomial reach by statistical means, using only a large enough random sample of points inside S. The practical motivation is simple: when the value of the polynomial reach , or rather a lower bound for it, is approximately known, the polynomial coefficients can be estimated from the sample points by using standard methods in polynomial approximation. As a result, we get a quite general method to estimate the volume and boundary measure of the set, relying only on an inner sample of points and not requiring the use any smoothing parameter. This paper explores the theoretical and practical aspects of this idea.

相關內容

In logistic regression modeling, Firth's modified estimator is widely used to address the issue of data separation, which results in the nonexistence of the maximum likelihood estimate. Firth's modified estimator can be formulated as a penalized maximum likelihood estimator in which Jeffreys' prior is adopted as the penalty term. Despite its widespread use in practice, the formal verification of the corresponding estimate's existence has not been established. In this study, we establish the existence theorem of Firth's modified estimate in binomial logistic regression models, assuming only the full column rankness of the design matrix. We also discuss other binomial regression models obtained through alternating link functions and prove the existence of similar penalized maximum likelihood estimates for such models.

Explicit time integration schemes coupled with Galerkin discretizations of time-dependent partial differential equations require solving a linear system with the mass matrix at each time step. For applications in structural dynamics, the solution of the linear system is frequently approximated through so-called mass lumping, which consists in replacing the mass matrix by some diagonal approximation. Mass lumping has been widely used in engineering practice for decades already and has a sound mathematical theory supporting it for finite element methods using the classical Lagrange basis. However, the theory for more general basis functions is still missing. Our paper partly addresses this shortcoming. Some special and practically relevant properties of lumped mass matrices are proved and we discuss how these properties naturally extend to banded and Kronecker product matrices whose structure allows to solve linear systems very efficiently. Our theoretical results are applied to isogeometric discretizations but are not restricted to them.

In this work, we derive a $\gamma$-robust a posteriori error estimator for finite element approximations of the Allen-Cahn equation with variable non-degenerate mobility. The estimator utilizes spectral estimates for the linearized steady part of the differential operator as well as a conditional stability estimate based on a weighted sum of Bregman distances, based on the energy and a functional related to the mobility. A suitable reconstruction of the numerical solution in the stability estimate leads to a fully computable estimator.

We study strong approximation of scalar additive noise driven stochastic differential equations (SDEs) at time point $1$ in the case that the drift coefficient is bounded and has Sobolev regularity $s\in(0,1)$. Recently, it has been shown in [arXiv:2101.12185v2 (2022)] that for such SDEs the equidistant Euler approximation achieves an $L^2$-error rate of at least $(1+s)/2$, up to an arbitrary small $\varepsilon$, in terms of the number of evaluations of the driving Brownian motion $W$. In the present article we prove a matching lower error bound for $s\in(1/2,1)$. More precisely we show that, for every $s\in(1/2,1)$, the $L^2$-error rate $(1+s)/2$ can, up to a logarithmic term, not be improved in general by no numerical method based on finitely many evaluations of $W$ at fixed time points. Up to now, this result was known in the literature only for the cases $s=1/2-$ and $s=1-$. For the proof we employ the coupling of noise technique recently introduced in [arXiv:2010.00915 (2020)] to bound the $L^2$-error of an arbitrary approximation from below by the $L^2$-distance of two occupation time functionals provided by a specifically chosen drift coefficient with Sobolev regularity $s$ and two solutions of the corresponding SDE with coupled driving Brownian motions. For the analysis of the latter distance we employ a transformation of the original SDE to overcome the problem of correlated increments of the difference of the two coupled solutions, occupation time estimates to cope with the lack of regularity of the chosen drift coefficient around the point $0$ and scaling properties of the drift coefficient.

Backtracking linesearch is the de facto approach for minimizing continuously differentiable functions with locally Lipschitz gradient. In recent years, it has been shown that in the convex setting it is possible to avoid linesearch altogether, and to allow the stepsize to adapt based on a local smoothness estimate without any backtracks or evaluations of the function value. In this work we propose an adaptive proximal gradient method, adaPG, that uses novel estimates of the local smoothness modulus which leads to less conservative stepsize updates and that can additionally cope with nonsmooth terms. This idea is extended to the primal-dual setting where an adaptive three-term primal-dual algorithm, adaPD, is proposed which can be viewed as an extension of the PDHG method. Moreover, in this setting the "essentially" fully adaptive variant adaPD$^+$ is proposed that avoids evaluating the linear operator norm by invoking a backtracking procedure, that, remarkably, does not require extra gradient evaluations. Numerical simulations demonstrate the effectiveness of the proposed algorithms compared to the state of the art.

The transparent boundary condition for the free Schr\"{o}dinger equation on a rectangular computational domain requires implementation of an operator of the form $\sqrt{\partial_t-i\triangle_{\Gamma}}$ where $\triangle_{\Gamma}$ is the Laplace-Beltrami operator. It is known that this operator is nonlocal in time as well as space which poses a significant challenge in developing an efficient numerical method of solution. The computational complexity of the existing methods scale with the number of time-steps which can be attributed to the nonlocal nature of the boundary operator. In this work, we report an effectively local approximation for the boundary operator such that the resulting complexity remains independent of number of time-steps. At the heart of this algorithm is a Pad\'e approximant based rational approximation of certain fractional operators that handles corners of the domain adequately. For the spatial discretization, we use a Legendre-Galerkin spectral method with a new boundary adapted basis which ensures that the resulting linear system is banded. A compatible boundary-lifting procedure is also presented which accommodates the segments as well as the corners on the boundary. The proposed novel scheme can be implemented within the framework of any one-step time marching schemes. In particular, we demonstrate these ideas for two one-step methods, namely, the backward-differentiation formula of order 1 (BDF1) and the trapezoidal rule (TR). For the sake of comparison, we also present a convolution quadrature based scheme conforming to the one-step methods which is computationally expensive but serves as a golden standard. Finally, several numerical tests are presented to demonstrate the effectiveness of our novel method as well as to verify the order of convergence empirically.

We consider the two-pronged fork frame $F$ and the variety $\mathbf{Eq}(B_F)$ generated by its dual closure algebra $B_F$. We describe the finite projective algebras in $\mathbf{Eq}(B_F)$ and give a purely semantic proof that unification in $\mathbf{Eq}(B_F)$ is finitary and not unitary.

The $L_p$-discrepancy is a classical quantitative measure for the irregularity of distribution of an $N$-element point set in the $d$-dimensional unit cube. Its inverse for dimension $d$ and error threshold $\varepsilon \in (0,1)$ is the number of points in $[0,1)^d$ that is required such that the minimal normalized $L_p$-discrepancy is less or equal $\varepsilon$. It is well known, that the inverse of $L_2$-discrepancy grows exponentially fast with the dimension $d$, i.e., we have the curse of dimensionality, whereas the inverse of $L_{\infty}$-discrepancy depends exactly linearly on $d$. The behavior of inverse of $L_p$-discrepancy for general $p \not\in \{2,\infty\}$ was an open problem since many years. Recently, the curse of dimensionality for the $L_p$-discrepancy was shown for an infinite sequence of values $p$ in $(1,2]$, but the general result seemed to be out of reach. In the present paper we show that the $L_p$-discrepancy suffers from the curse of dimensionality for all $p$ in $(1,\infty)$ and only the case $p=1$ is still open. This result follows from a more general result that we show for the worst-case error of positive quadrature formulas for an anchored Sobolev space of once differentiable functions in each variable whose first mixed derivative has finite $L_q$-norm, where $q$ is the H\"older conjugate of $p$.

In this paper, we harness a result in point process theory, specifically the expectation of the weighted $K$-function, where the weighting is done by the true first-order intensity function. This theoretical result can be employed as an estimation method to derive parameter estimates for a particular model assumed for the data. The underlying motivation is to avoid the difficulties associated with dealing with complex likelihoods in point process models and their maximization. The exploited result makes our method theoretically applicable to any model specification. In this paper, we restrict our study to Poisson models, whose likelihood represents the base for many more complex point process models. In this context, our proposed method can estimate the vector of local parameters that correspond to the points within the analyzed point pattern without introducing any additional complexity compared to the global estimation. We illustrate the method through simulation studies for both purely spatial and spatio-temporal point processes and show complex scenarios based on the Poisson model through the analysis of two real datasets concerning environmental problems.

The Bell regression model (BRM) is a statistical model that is often used in the analysis of count data that exhibits overdispersion. In this study, we propose a Bayesian analysis of the BRM and offer a new perspective on its application. Specifically, we introduce a G-prior distribution for Bayesian inference in BRM, in addition to a flat-normal prior distribution. To compare the performance of the proposed prior distributions, we conduct a simulation study and demonstrate that the G-prior distribution provides superior estimation results for the BRM. Furthermore, we apply the methodology to real data and compare the BRM to the Poisson regression model using various model selection criteria. Our results provide valuable insights into the use of Bayesian methods for estimation and inference of the BRM and highlight the importance of considering the choice of prior distribution in the analysis of count data.

北京阿比特科技有限公司