亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We propose a novel methodology for discovering the presence of relationships realized as binary time series between variables in high dimension. To make it visually intuitive, we regard the existence of a relationship as an edge connection, and call a collection of such edges a network. Our objective is thus rephrased as uncovering the network by selecting relevant edges, referred to as the network exploration. Our methodology is based on multiple testing for the presence or absence of each edge, designed to ensure statistical reproducibility via controlling the false discovery rate (FDR). In particular, we carefully construct $p$-variables, and apply the Benjamini-Hochberg (BH) procedure. We show that the BH with our $p$-variables controls the FDR under arbitrary dependence structure with any sample size and dimension, and has asymptotic power one under mild conditions. The validity is also confirmed by simulations and a real data example.

相關內容

Networking:IFIP International Conferences on Networking。 Explanation:國際網絡會議。 Publisher:IFIP。 SIT:

Program synthesis methods aim to automatically generate programs restricted to a language that can explain a given specification of input-output pairs. While purely symbolic approaches suffer from a combinatorial search space, recent methods leverage neural networks to learn distributions over program structures to narrow this search space significantly, enabling more efficient search. However, for challenging problems, it remains difficult to train models to perform program synthesis in one shot, making test-time search essential. Most neural methods lack structured search mechanisms during inference, relying instead on stochastic sampling or gradient updates, which can be inefficient. In this work, we propose the Latent Program Network (LPN), a general algorithm for program induction that learns a distribution over latent programs in a continuous space, enabling efficient search and test-time adaptation. We explore how to train these networks to optimize for test-time computation and demonstrate the use of gradient-based search both during training and at test time. We evaluate LPN on ARC-AGI, a program synthesis benchmark that evaluates performance by generalizing programs to new inputs rather than explaining the underlying specification. We show that LPN can generalize beyond its training distribution and adapt to unseen tasks by utilizing test-time computation, outperforming algorithms without test-time adaptation mechanisms.

In this work we introduce a new notion: local mechanisms. These are truthful mechanisms that have an implementation as fast distributed algorithms and non-trivial approximation guarantees. We show how monotone distributed optimisation algorithms can be turned into truthful mechanisms using Myerson's Lemma. We demonstrate mechanisms for four fundamental graph problems: maximum-weight independent set, minimum-weight vertex cover, minimum-weight dominating set, and a variant of weighted colouring. We show how these mechanisms can be implemented in the distributed setting. The key observation is that computing the so-called critical prices of a monotone algorithm can be done with the same time complexity as the original algorithm in the LOCAL model of distributed computing. Our work establishes a new connection between algorithmic mechanism design and distributed graph algorithms. We pose several open questions, such as can critical prices be computed with small messages. It also points to the importance of designing monotone distributed optimisation algorithms. Our work extends previous work in Distributed Algorithmic Mechanism Design (DAMD) in a new direction. Instead of studying global problems like routing or leader election, we study local resource allocation problems. Our algorithms are simple and thus potentially practical. Local algorithms are particularly interesting for highly dynamic large-scale systems, and there are many potential future application domains, e.g. demand-side load management in electric grids or resource allocation in IoT computing.

Disentangled representation learning in speech processing has lagged behind other domains, largely due to the lack of datasets with annotated generative factors for robust evaluation. To address this, we propose SynSpeech, a novel large-scale synthetic speech dataset specifically designed to enable research on disentangled speech representations. SynSpeech includes controlled variations in speaker identity, spoken text, and speaking style, with three dataset versions to support experimentation at different levels of complexity. In this study, we present a comprehensive framework to evaluate disentangled representation learning techniques, applying both linear probing and established supervised disentanglement metrics to assess the modularity, compactness, and explicitness of the representations learned by a state-of-the-art model. Using the RAVE model as a test case, we find that SynSpeech facilitates benchmarking across a range of factors, achieving promising disentanglement of simpler features like gender and speaking style, while highlighting challenges in isolating complex attributes like speaker identity. This benchmark dataset and evaluation framework fills a critical gap, supporting the development of more robust and interpretable speech representation learning methods.

We introduce an approach for analyzing the responses of dynamical systems to external perturbations that combines score-based generative modeling with the Generalized Fluctuation-Dissipation Theorem (GFDT). The methodology enables accurate estimation of system responses, including those with non-Gaussian statistics. We numerically validate our approach using time-series data from three different stochastic partial differential equations of increasing complexity: an Ornstein-Uhlenbeck process with spatially correlated noise, a modified stochastic Allen-Cahn equation, and the 2D Navier-Stokes equations. We demonstrate the improved accuracy of the methodology over conventional methods and discuss its potential as a versatile tool for predicting the statistical behavior of complex dynamical systems.

Graph learning architectures based on the k-dimensional Weisfeiler-Leman (k-WL) hierarchy offer a theoretically well-understood expressive power. However, such architectures often fail to deliver solid predictive performance on real-world tasks, limiting their practical impact. In contrast, global attention-based models such as graph transformers demonstrate strong performance in practice, but comparing their expressive power with the k-WL hierarchy remains challenging, particularly since these architectures rely on positional or structural encodings for their expressivity and predictive performance. To address this, we show that the recently proposed Edge Transformer, a global attention model operating on node pairs instead of nodes, has at least 3-WL expressive power. Empirically, we demonstrate that the Edge Transformer surpasses other theoretically aligned architectures regarding predictive performance while not relying on positional or structural encodings. Our code is available at //github.com/luis-mueller/towards-principled-gts

We introduce a family of boundary conditions and point constraints for conformal immersions that increase the controllability of surfaces defined as minimizers of conformal variational problems. Our free boundary conditions fix the metric on the boundary, up to a global scale, and admit a discretization compatible with discrete conformal equivalence. We also introduce constraints on the conformal scale factor, enforcing rigidity of the geometry in regions of interest, and describe how in the presence of point constraints the conformal class encodes knot points of the spline that can be directly manipulated. To control the tangent planes, we introduce flux constraints balancing the internal material stresses. The collection of these point constraints provide intuitive controls for exploring a subspace of conformal immersions interpolating a fixed set of points in space. We demonstrate the applicability of our framework to geometric modeling, mathematical visualization, and form finding.

Interactive Natural Language Processing (iNLP) has emerged as a novel paradigm within the field of NLP, aimed at addressing limitations in existing frameworks while aligning with the ultimate goals of artificial intelligence. This paradigm considers language models as agents capable of observing, acting, and receiving feedback iteratively from external entities. Specifically, language models in this context can: (1) interact with humans for better understanding and addressing user needs, personalizing responses, aligning with human values, and improving the overall user experience; (2) interact with knowledge bases for enriching language representations with factual knowledge, enhancing the contextual relevance of responses, and dynamically leveraging external information to generate more accurate and informed responses; (3) interact with models and tools for effectively decomposing and addressing complex tasks, leveraging specialized expertise for specific subtasks, and fostering the simulation of social behaviors; and (4) interact with environments for learning grounded representations of language, and effectively tackling embodied tasks such as reasoning, planning, and decision-making in response to environmental observations. This paper offers a comprehensive survey of iNLP, starting by proposing a unified definition and framework of the concept. We then provide a systematic classification of iNLP, dissecting its various components, including interactive objects, interaction interfaces, and interaction methods. We proceed to delve into the evaluation methodologies used in the field, explore its diverse applications, scrutinize its ethical and safety issues, and discuss prospective research directions. This survey serves as an entry point for researchers who are interested in this rapidly evolving area and offers a broad view of the current landscape and future trajectory of iNLP.

This book is the result of a seminar in which we reviewed multimodal approaches and attempted to create a solid overview of the field, starting with the current state-of-the-art approaches in the two subfields of Deep Learning individually. Further, modeling frameworks are discussed where one modality is transformed into the other, as well as models in which one modality is utilized to enhance representation learning for the other. To conclude the second part, architectures with a focus on handling both modalities simultaneously are introduced. Finally, we also cover other modalities as well as general-purpose multi-modal models, which are able to handle different tasks on different modalities within one unified architecture. One interesting application (Generative Art) eventually caps off this booklet.

Causal discovery and causal reasoning are classically treated as separate and consecutive tasks: one first infers the causal graph, and then uses it to estimate causal effects of interventions. However, such a two-stage approach is uneconomical, especially in terms of actively collected interventional data, since the causal query of interest may not require a fully-specified causal model. From a Bayesian perspective, it is also unnatural, since a causal query (e.g., the causal graph or some causal effect) can be viewed as a latent quantity subject to posterior inference -- other unobserved quantities that are not of direct interest (e.g., the full causal model) ought to be marginalized out in this process and contribute to our epistemic uncertainty. In this work, we propose Active Bayesian Causal Inference (ABCI), a fully-Bayesian active learning framework for integrated causal discovery and reasoning, which jointly infers a posterior over causal models and queries of interest. In our approach to ABCI, we focus on the class of causally-sufficient, nonlinear additive noise models, which we model using Gaussian processes. We sequentially design experiments that are maximally informative about our target causal query, collect the corresponding interventional data, and update our beliefs to choose the next experiment. Through simulations, we demonstrate that our approach is more data-efficient than several baselines that only focus on learning the full causal graph. This allows us to accurately learn downstream causal queries from fewer samples while providing well-calibrated uncertainty estimates for the quantities of interest.

The dominant sequence transduction models are based on complex recurrent or convolutional neural networks in an encoder-decoder configuration. The best performing models also connect the encoder and decoder through an attention mechanism. We propose a new simple network architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two machine translation tasks show these models to be superior in quality while being more parallelizable and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task, improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training costs of the best models from the literature. We show that the Transformer generalizes well to other tasks by applying it successfully to English constituency parsing both with large and limited training data.

北京阿比特科技有限公司