亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In recent years, many positivity-preserving schemes for initial value problems have been constructed by modifying a Runge--Kutta (RK) method by weighting the right-hand side of the system of differential equations with solution-dependent factors. These include the classes of modified Patankar--Runge--Kutta (MPRK) and Geometric Conservative (GeCo) methods. Compared to traditional RK methods, the analysis of accuracy and stability of these methods is more complicated. In this work, we provide a comprehensive and unifying theory of order conditions for such RK-like methods, which differ from original RK schemes in that their coefficients are solution-dependent. The resulting order conditions are themselves solution-dependent and obtained using the theory of NB-series, and thus, can easily be read off from labeled N-trees. We present for the first time order conditions for MPRK and GeCo schemes of arbitrary order; For MPRK schemes, the order conditions are given implicitly in terms of the stages. From these results, we recover as particular cases all known order conditions from the literature for first- and second-order GeCo as well as first-, second- and third-order MPRK methods. Additionally, we derive sufficient and necessary conditions in an explicit form for 3rd and 4th order GeCo schemes as well as 4th order MPRK methods.

相關內容

CASES:International Conference on Compilers, Architectures, and Synthesis for Embedded Systems。 Explanation:嵌入式(shi)系(xi)統(tong)編譯器、體系(xi)結構和(he)綜合國(guo)際會議。 Publisher:ACM。 SIT:

In this paper, both semidiscrete and fully discrete finite element methods are analyzed for the penalized two-dimensional unsteady Navier-Stokes equations with nonsmooth initial data. First order backward Euler method is applied for the time discretization, whereas conforming finite element method is used for the spatial discretization. Optimal $L^2$ error estimates for the semidiscrete as well as the fully discrete approximations of the velocity and of the pressure are derived for realistically assumed conditions on the data. The main ingredient in the proof is the appropriate exploitation of the inverse of the penalized Stokes operator, negative norm estimates and time weighted estimates. Numerical examples are discussed at the end which conform our theoretical results.

In this paper, we provide a novel framework for the analysis of generalization error of first-order optimization algorithms for statistical learning when the gradient can only be accessed through partial observations given by an oracle. Our analysis relies on the regularity of the gradient w.r.t. the data samples, and allows to derive near matching upper and lower bounds for the generalization error of multiple learning problems, including supervised learning, transfer learning, robust learning, distributed learning and communication efficient learning using gradient quantization. These results hold for smooth and strongly-convex optimization problems, as well as smooth non-convex optimization problems verifying a Polyak-Lojasiewicz assumption. In particular, our upper and lower bounds depend on a novel quantity that extends the notion of conditional standard deviation, and is a measure of the extent to which the gradient can be approximated by having access to the oracle. As a consequence, our analysis provides a precise meaning to the intuition that optimization of the statistical learning objective is as hard as the estimation of its gradient. Finally, we show that, in the case of standard supervised learning, mini-batch gradient descent with increasing batch sizes and a warm start can reach a generalization error that is optimal up to a multiplicative factor, thus motivating the use of this optimization scheme in practical applications.

With the rise of Extended Reality (XR) technology, there is a growing need for real-time light field generation from sparse view inputs. Existing methods can be classified into offline techniques, which can generate high-quality novel views but at the cost of long inference/training time, and online methods, which either lack generalizability or produce unsatisfactory results. However, we have observed that the intrinsic sparse manifold of Multi-plane Images (MPI) enables a significant acceleration of light field generation while maintaining rendering quality. Based on this insight, we introduce EffLiFe, a novel light field optimization method, which leverages the proposed Hierarchical Sparse Gradient Descent (HSGD) to produce high-quality light fields from sparse view images in real time. Technically, the coarse MPI of a scene is first generated using a 3D CNN, and it is further sparsely optimized by focusing only on important MPI gradients in a few iterations. Nevertheless, relying solely on optimization can lead to artifacts at occlusion boundaries. Therefore, we propose an occlusion-aware iterative refinement module that removes visual artifacts in occluded regions by iteratively filtering the input. Extensive experiments demonstrate that our method achieves comparable visual quality while being 100x faster on average than state-of-the-art offline methods and delivering better performance (about 2 dB higher in PSNR) compared to other online approaches.

It is well known that the Euler method for approximating the solutions of a random ordinary differential equation $\mathrm{d}X_t/\mathrm{d}t = f(t, X_t, Y_t)$ driven by a stochastic process $\{Y_t\}_t$ with $\theta$-H\"older sample paths is estimated to be of strong order $\theta$ with respect to the time step, provided $f=f(t, x, y)$ is sufficiently regular and with suitable bounds. Here, it is proved that, in many typical cases, further conditions on the noise can be exploited so that the strong convergence is actually of order 1, regardless of the H\"older regularity of the sample paths. This applies for instance to additive or multiplicative It\^o process noises (such as Wiener, Ornstein-Uhlenbeck, and geometric Brownian motion processes); to point-process noises (such as Poisson point processes and Hawkes self-exciting processes, which even have jump-type discontinuities); and to transport-type processes with sample paths of bounded variation. The result is based on a novel approach, estimating the global error as an iterated integral over both large and small mesh scales, and switching the order of integration to move the critical regularity to the large scale. The work is complemented with numerical simulations illustrating the strong order 1 convergence in those cases, and with an example with fractional Brownian motion noise with Hurst parameter $0 < H < 1/2$ for which the order of convergence is $H + 1/2$, hence lower than the attained order 1 in the examples above, but still higher than the order $H$ of convergence expected from previous works.

Directed acyclic graphs (DAGs) are directed graphs in which there is no path from a vertex to itself. DAGs are an omnipresent data structure in computer science and the problem of counting the DAGs of given number of vertices and to sample them uniformly at random has been solved respectively in the 70's and the 00's. In this paper, we propose to explore a new variation of this model where DAGs are endowed with an independent ordering of the out-edges of each vertex, thus allowing to model a wide range of existing data structures. We provide efficient algorithms for sampling objects of this new class, both with or without control on the number of edges, and obtain an asymptotic equivalent of their number. We also show the applicability of our method by providing an effective algorithm for the random generation of classical labelled DAGs with a prescribed number of vertices and edges, based on a similar approach. This is the first known algorithm for sampling labelled DAGs with full control on the number of edges, and it meets a need in terms of applications, that had already been acknowledged in the literature.

We consider additive Schwarz methods for boundary value problems involving the $p$-Laplacian. Although the existing theoretical estimates indicate a sublinear convergence rate for these methods, empirical evidence from numerical experiments demonstrates a linear convergence rate. In this paper, we narrow the gap between these theoretical and empirical results by presenting a novel convergence analysis. Firstly, we present an abstract convergence theory of additive Schwarz methods written in terms of a quasi-norm. This quasi-norm exhibits behavior similar to the Bregman distance of the convex energy functional associated to the problem. Secondly, we provide a quasi-norm version of the Poincar'{e}--Friedrichs inequality, which is essential for deriving a quasi-norm stable decomposition for a two-level domain decomposition setting. By utilizing these two key elements, we establish a new bound for the linear convergence rate of the methods.

Nested sampling (NS) computes parameter posterior distributions and makes Bayesian model comparison computationally feasible. Its strengths are the unsupervised navigation of complex, potentially multi-modal posteriors until a well-defined termination point. A systematic literature review of nested sampling algorithms and variants is presented. We focus on complete algorithms, including solutions to likelihood-restricted prior sampling, parallelisation, termination and diagnostics. The relation between number of live points, dimensionality and computational cost is studied for two complete algorithms. A new formulation of NS is presented, which casts the parameter space exploration as a search on a tree data structure. Previously published ways of obtaining robust error estimates and dynamic variations of the number of live points are presented as special cases of this formulation. A new online diagnostic test is presented based on previous insertion rank order work. The survey of nested sampling methods concludes with outlooks for future research.

This paper introduces a novel paradigm for constructing linearly implicit and high-order unconditionally energy-stable schemes for general gradient flows, utilizing the scalar auxiliary variable (SAV) approach and the additive Runge-Kutta (ARK) methods. We provide a rigorous proof of energy stability, unique solvability, and convergence. The proposed schemes generalizes some recently developed high-order, energy-stable schemes and address their shortcomings. On the one other hand, the proposed schemes can incorporate existing SAV-RK type methods after judiciously selecting the Butcher tables of ARK methods \cite{sav_li,sav_nlsw}. The order of a SAV-RKPC method can thus be confirmed theoretically by the order conditions of the corresponding ARK method. Several new schemes are constructed based on our framework, which perform to be more stable than existing SAV-RK type methods. On the other hand, the proposed schemes do not limit to a specific form of the nonlinear part of the free energy and can achieve high order with fewer intermediate stages compared to the convex splitting ARK methods \cite{csrk}. Numerical experiments demonstrate stability and efficiency of proposed schemes.

Consensus clustering (or clustering aggregation) inputs $k$ partitions of a given ground set $V$, and seeks to create a single partition that minimizes disagreement with all input partitions. State-of-the-art algorithms for consensus clustering are based on correlation clustering methods like the popular Pivot algorithm. Unfortunately these methods have not proved to be practical for consensus clustering instances where either $k$ or $V$ gets large. In this paper we provide practical run time improvements for correlation clustering solvers when $V$ is large. We reduce the time complexity of Pivot from $O(|V|^2 k)$ to $O(|V| k)$, and its space complexity from $O(|V|^2)$ to $O(|V| k)$ -- a significant savings since in practice $k$ is much less than $|V|$. We also analyze a sampling method for these algorithms when $k$ is large, bridging the gap between running Pivot on the full set of input partitions (an expected 1.57-approximation) and choosing a single input partition at random (an expected 2-approximation). We show experimentally that algorithms like Pivot do obtain quality clustering results in practice even on small samples of input partitions.

In this work, we investigate the interval generalized Sylvester matrix equation ${\bf{A}}X{\bf{B}}+{\bf{C}}X{\bf{D}}={\bf{F}}$ and develop some techniques for obtaining outer estimations for the so-called united solution set of this interval system. First, we propose a modified variant of the Krawczyk operator which causes reducing computational complexity to cubic, compared to Kronecker product form. We then propose an iterative technique for enclosing the solution set. These approaches are based on spectral decompositions of the midpoints of ${\bf{A}}$, ${\bf{B}}$, ${\bf{C}}$ and ${\bf{D}}$ and in both of them we suppose that the midpoints of ${\bf{A}}$ and ${\bf{C}}$ are simultaneously diagonalizable as well as for the midpoints of the matrices ${\bf{B}}$ and ${\bf{D}}$. Some numerical experiments are given to illustrate the performance of the proposed methods.

北京阿比特科技有限公司