End-to-end region-based object detectors like Sparse R-CNN usually have multiple cascade bounding box decoding stages, which refine the current predictions according to their previous results. Model parameters within each stage are independent, evolving a huge cost. In this paper, we find the general setting of decoding stages is actually redundant. By simply sharing parameters and making a recursive decoder, the detector already obtains a significant improvement. The recursive decoder can be further enhanced by positional encoding (PE) of the proposal box, which makes it aware of the exact locations and sizes of input bounding boxes, thus becoming adaptive to proposals from different stages during the recursion. Moreover, we also design centerness-based PE to distinguish the RoI feature element and dynamic convolution kernels at different positions within the bounding box. To validate the effectiveness of the proposed method, we conduct intensive ablations and build the full model on three recent mainstream region-based detectors. The RecusiveDet is able to achieve obvious performance boosts with even fewer model parameters and slightly increased computation cost. Codes are available at //github.com/bravezzzzzz/RecursiveDet.
In recent years, two time series classification models, ROCKET and MINIROCKET, have attracted much attention for their low training cost and state-of-the-art accuracy. Utilizing random 1-D convolutional kernels without training, ROCKET and MINIROCKET can rapidly extract features from time series data, allowing for the efficient fitting of linear classifiers. However, to comprehensively capture useful features, a large number of random kernels are required, which is incompatible for resource-constrained devices. Therefore, a heuristic evolutionary algorithm named S-ROCKET is devised to recognize and prune redundant kernels. Nevertheless, the inherent nature of evolutionary algorithms renders the evaluation of kernels within S-ROCKET an unacceptable time-consuming process. In this paper, diverging from S-ROCKET, which directly evaluates random kernels with nonsignificant differences, we remove kernels from a feature selection perspective by eliminating associating connections in the sequential classification layer. To this end, we start by formulating the pruning challenge as a Group Elastic Net classification problem and employ the ADMM method to arrive at a solution. Sequentially, we accelerate the aforementioned time-consuming solving process by bifurcating the $l_{2,1}$ and $l_2$ regularizations into two sequential stages and solve them separately, which ultimately forms our core algorithm, named P-ROCKET. Stage 1 of P-ROCKET employs group-wise regularization similarly to our initial ADMM-based Algorithm, but introduces dynamically varying penalties to greatly accelerate the process. To mitigate overfitting, Stage 2 of P-ROCKET implements element-wise regularization to refit a linear classifier, utilizing the retained features.
Many multi-object tracking (MOT) methods follow the framework of "tracking by detection", which associates the target objects-of-interest based on the detection results. However, due to the separate models for detection and association, the tracking results are not optimal.Moreover, the speed is limited by some cumbersome association methods to achieve high tracking performance. In this work, we propose an end-to-end MOT method, with a Gaussian filter-inspired dynamic search region refinement module to dynamically filter and refine the search region by considering both the template information from the past frames and the detection results from the current frame with little computational burden, and a lightweight attention-based tracking head to achieve the effective fine-grained instance association. Extensive experiments and ablation study on MOT17 and MOT20 datasets demonstrate that our method can achieve the state-of-the-art performance with reasonable speed.
Few-shot object detection (FSOD) identifies objects from extremely few annotated samples. Most existing FSOD methods, recently, apply the two-stage learning paradigm, which transfers the knowledge learned from abundant base classes to assist the few-shot detectors by learning the global features. However, such existing FSOD approaches seldom consider the localization of objects from local to global. Limited by the scarce training data in FSOD, the training samples of novel classes typically capture part of objects, resulting in such FSOD methods cannot detect the completely unseen object during testing. To tackle this problem, we propose an Extensible Co-Existing Attention (ECEA) module to enable the model to infer the global object according to the local parts. Essentially, the proposed module continuously learns the extensible ability on the base stage with abundant samples and transfers it to the novel stage, which can assist the few-shot model to quickly adapt in extending local regions to co-existing regions. Specifically, we first devise an extensible attention mechanism that starts with a local region and extends attention to co-existing regions that are similar and adjacent to the given local region. We then implement the extensible attention mechanism in different feature scales to progressively discover the full object in various receptive fields. Extensive experiments on the PASCAL VOC and COCO datasets show that our ECEA module can assist the few-shot detector to completely predict the object despite some regions failing to appear in the training samples and achieve the new state of the art compared with existing FSOD methods.
Point-of-Interest (POI) recommendation plays a vital role in various location-aware services. It has been observed that POI recommendation is driven by both sequential and geographical influences. However, since there is no annotated label of the dominant influence during recommendation, existing methods tend to entangle these two influences, which may lead to sub-optimal recommendation performance and poor interpretability. In this paper, we address the above challenge by proposing DisenPOI, a novel Disentangled dual-graph framework for POI recommendation, which jointly utilizes sequential and geographical relationships on two separate graphs and disentangles the two influences with self-supervision. The key novelty of our model compared with existing approaches is to extract disentangled representations of both sequential and geographical influences with contrastive learning. To be specific, we construct a geographical graph and a sequential graph based on the check-in sequence of a user. We tailor their propagation schemes to become sequence-/geo-aware to better capture the corresponding influences. Preference proxies are extracted from check-in sequence as pseudo labels for the two influences, which supervise the disentanglement via a contrastive loss. Extensive experiments on three datasets demonstrate the superiority of the proposed model.
Attention-based encoder-decoder (AED) speech recognition model has been widely successful in recent years. However, the joint optimization of acoustic model and language model in end-to-end manner has created challenges for text adaptation. In particular, effectively, quickly and inexpensively adapting text has become a primary concern for deploying AED systems in industry. To address this issue, we propose a novel model, the hybrid attention-based encoder-decoder (HAED) speech recognition model that preserves the modularity of conventional hybrid automatic speech recognition systems. Our HAED model separates the acoustic and language models, allowing for the use of conventional text-based language model adaptation techniques. We demonstrate that the proposed HAED model yields 21\% Word Error Rate (WER) improvements in relative when out-of-domain text data is used for language model adaptation, and with only a minor degradation in WER on a general test set compared with conventional AED model.
Denoising diffusion probabilistic models (DDPMs) have shown promising performance for speech synthesis. However, a large number of iterative steps are required to achieve high sample quality, which restricts the inference speed. Maintaining sample quality while increasing sampling speed has become a challenging task. In this paper, we propose a "Co"nsistency "Mo"del-based "Speech" synthesis method, CoMoSpeech, which achieve speech synthesis through a single diffusion sampling step while achieving high audio quality. The consistency constraint is applied to distill a consistency model from a well-designed diffusion-based teacher model, which ultimately yields superior performances in the distilled CoMoSpeech. Our experiments show that by generating audio recordings by a single sampling step, the CoMoSpeech achieves an inference speed more than 150 times faster than real-time on a single NVIDIA A100 GPU, which is comparable to FastSpeech2, making diffusion-sampling based speech synthesis truly practical. Meanwhile, objective and subjective evaluations on text-to-speech and singing voice synthesis show that the proposed teacher models yield the best audio quality, and the one-step sampling based CoMoSpeech achieves the best inference speed with better or comparable audio quality to other conventional multi-step diffusion model baselines. Audio samples are available at //comospeech.github.io/.
Contrastive learning allows us to flexibly define powerful losses by contrasting positive pairs from sets of negative samples. Recently, the principle has also been used to learn cross-modal embeddings for video and text, yet without exploiting its full potential. In particular, previous losses do not take the intra-modality similarities into account, which leads to inefficient embeddings, as the same content is mapped to multiple points in the embedding space. With CrossCLR, we present a contrastive loss that fixes this issue. Moreover, we define sets of highly related samples in terms of their input embeddings and exclude them from the negative samples to avoid issues with false negatives. We show that these principles consistently improve the quality of the learned embeddings. The joint embeddings learned with CrossCLR extend the state of the art in video-text retrieval on Youcook2 and LSMDC datasets and in video captioning on Youcook2 dataset by a large margin. We also demonstrate the generality of the concept by learning improved joint embeddings for other pairs of modalities.
Multi-agent influence diagrams (MAIDs) are a popular form of graphical model that, for certain classes of games, have been shown to offer key complexity and explainability advantages over traditional extensive form game (EFG) representations. In this paper, we extend previous work on MAIDs by introducing the concept of a MAID subgame, as well as subgame perfect and trembling hand perfect equilibrium refinements. We then prove several equivalence results between MAIDs and EFGs. Finally, we describe an open source implementation for reasoning about MAIDs and computing their equilibria.
Most existing event extraction (EE) methods merely extract event arguments within the sentence scope. However, such sentence-level EE methods struggle to handle soaring amounts of documents from emerging applications, such as finance, legislation, health, etc., where event arguments always scatter across different sentences, and even multiple such event mentions frequently co-exist in the same document. To address these challenges, we propose a novel end-to-end model, Doc2EDAG, which can generate an entity-based directed acyclic graph to fulfill the document-level EE (DEE) effectively. Moreover, we reformalize a DEE task with the no-trigger-words design to ease the document-level event labeling. To demonstrate the effectiveness of Doc2EDAG, we build a large-scale real-world dataset consisting of Chinese financial announcements with the challenges mentioned above. Extensive experiments with comprehensive analyses illustrate the superiority of Doc2EDAG over state-of-the-art methods. Data and codes can be found at //github.com/dolphin-zs/Doc2EDAG.
Sliding-window object detectors that generate bounding-box object predictions over a dense, regular grid have advanced rapidly and proven popular. In contrast, modern instance segmentation approaches are dominated by methods that first detect object bounding boxes, and then crop and segment these regions, as popularized by Mask R-CNN. In this work, we investigate the paradigm of dense sliding-window instance segmentation, which is surprisingly under-explored. Our core observation is that this task is fundamentally different than other dense prediction tasks such as semantic segmentation or bounding-box object detection, as the output at every spatial location is itself a geometric structure with its own spatial dimensions. To formalize this, we treat dense instance segmentation as a prediction task over 4D tensors and present a general framework called TensorMask that explicitly captures this geometry and enables novel operators on 4D tensors. We demonstrate that the tensor view leads to large gains over baselines that ignore this structure, and leads to results comparable to Mask R-CNN. These promising results suggest that TensorMask can serve as a foundation for novel advances in dense mask prediction and a more complete understanding of the task. Code will be made available.