亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The Kneser graph $K(n,k)$ is defined for integers $n$ and $k$ with $n \geq 2k$ as the graph whose vertices are all the $k$-subsets of $[n]=\{1,2,\ldots,n\}$ where two such sets are adjacent if they are disjoint. The Schrijver graph $S(n,k)$ is defined as the subgraph of $K(n,k)$ induced by the collection of all $k$-subsets of $[n]$ that do not include two consecutive elements modulo $n$. It is known that the chromatic number of both $K(n,k)$ and $S(n,k)$ is $n-2k+2$. In the computational Kneser and Schrijver problems, we are given an access to a coloring with $n-2k+1$ colors of the vertices of $K(n,k)$ and $S(n,k)$ respectively, and the goal is to find a monochromatic edge. We prove that the problems admit randomized algorithms with running time $n^{O(1)} \cdot k^{O(k)}$, hence they are fixed-parameter tractable with respect to the parameter $k$. The analysis involves structural results on intersecting families and on induced subgraphs of Kneser and Schrijver graphs. We also study the Agreeable-Set problem of assigning a small subset of a set of $m$ items to a group of $\ell$ agents, so that all agents value the subset at least as much as its complement. As an application of our algorithm for the Kneser problem, we obtain a randomized polynomial-time algorithm for the Agreeable-Set problem for instances with $\ell \geq m - O(\frac{\log m}{\log \log m})$. We further show that the Agreeable-Set problem is at least as hard as a variant of the Kneser problem with an extended access to the input coloring.

相關內容

Given the Fourier-Legendre expansions of $f$ and $g$, and mild conditions on $f$ and $g$, we derive the Fourier-Legendre expansion of their product in terms of their corresponding Fourier-Legendre coefficients. In this way, expansions of whole number powers of $f$ may be obtained. We establish upper bounds on rates of convergence. We then employ these expansions to solve semi-analytically a class of nonlinear PDEs with a polynomial nonlinearity of degree 2. The obtained numerical results illustrate the efficiency and performance accuracy of this Fourier-Legendre based solution methodology for solving an important class of nonlinear PDEs.

Let $\alpha$ and $\beta$ belong to the same quadratic field. We show that the inhomogeneous Beatty sequence $(\lfloor n \alpha + \beta \rfloor)_{n \geq 1}$ is synchronized, in the sense that there is a finite automaton that takes as input the Ostrowski representations of $n$ and $y$ in parallel, and accepts if and only if $y = \lfloor n \alpha + \beta \rfloor$. Since it is already known that the addition relation is computable for Ostrowski representations based on a quadratic number, a consequence is a new and rather simple proof that the first-order logical theory of these sequences with addition is decidable. The decision procedure is easily implemented in the free software Walnut. As an application, we show that for each $r \geq 1$ it is decidable whether the set $\{ \lfloor n \alpha + \beta \rfloor \, : \, n \geq 1 \}$ forms an additive basis (or asymptotic additive basis) of order $r$. Using our techniques, we also solve some open problems of Reble and Kimberling, and give an explicit characterization of a sequence of Hildebrand et al.

The question of characterizing the (finite) representable relation algebras in a ``nice" way is open. The class $\mathbf{RRA}$ is known to be not finitely axiomatizable in first-order logic. Nevertheless, it is conjectured that ``almost all'' finite relation algebras are representable. All finite relation algebras with three or fewer atoms are representable. So one may ask, Over what cardinalities of sets are they representable? This question was answered completely by Andr\'eka and Maddux (``Representations for small relation algebras,'' \emph{Notre Dame J. Form. Log.}, \textbf{35} (1994)); they determine the spectrum of every finite relation algebra with three or fewer atoms. In the present paper, we restrict attention to cyclic group representations, and completely determine the cyclic group spectrum for all seven symmetric integral relation algebras on three atoms. We find that in some instances, the spectrum and cyclic spectrum agree; in other instances, the spectra disagree for finitely many $n$; finally, for other instances, the spectra disagree for infinitely many $n$. The proofs employ constructions, SAT solvers, and the probabilistic method.

In this paper we consider the problem of estimating the $f$-moment ($\sum_{v\in [n]} (f(\mathbf{x}(v))-f(0))$) of a dynamic vector $\mathbf{x}\in \mathbb{G}^n$ over some abelian group $(\mathbb{G},+)$, where the $\|f\|_\infty$ norm is bounded. We propose a simple sketch and new estimation framework based on the \emph{Fourier transform} of $f$. I.e., we decompose $f$ into a linear combination of homomorphisms $f_1,f_2,\ldots$ from $(\mathbb{G},+)$ to $(\mathbb{C},\times)$, estimate the $f_k$-moment for each $f_k$, and synthesize them to obtain an estimate of the $f$-moment. Our estimators are asymptotically unbiased and have variance asymptotic to $\|\mathbf{x}\|_0^2 (\|f\|_\infty^2 m^{-1} + \|\hat{f}\|_1^2 m^{-2})$, where the size of the sketch is $O(m\log n\log|\mathbb{G}|)$ bits. When $\mathbb{G}=\mathbb{Z}$ this problem can also be solved using off-the-shelf $\ell_0$-samplers with space $O(m\log^2 n)$ bits, which does not obviously generalize to finite groups. As a concrete benchmark, we extend Ganguly, Garofalakis, and Rastogi's singleton-detector-based sampler to work over $\mathbb{G}$ using $O(m\log n\log|\mathbb{G}|\log(m\log n))$ bits. We give some experimental evidence that the Fourier-based estimation framework is significantly more accurate than sampling-based approaches at the same memory footprint.

Given a simple $n$-vertex, $m$-edge graph $G$ undergoing edge insertions and deletions, we give two new fully dynamic algorithms for exactly maintaining the edge connectivity of $G$ in $\tilde{O}(n)$ worst-case update time and $\tilde{O}(m^{1-1/31})$ amortized update time, respectively. Prior to our work, all dynamic edge connectivity algorithms either assumed bounded edge connectivity, guaranteed approximate solutions, or were restricted to edge insertions only. Our results provide an affirmative answer to an open question posed by Thorup [Combinatorica'07].

We study a general factor analysis framework where the $n$-by-$p$ data matrix is assumed to follow a general exponential family distribution entry-wise. While this model framework has been proposed before, we here further relax its distributional assumption by using a quasi-likelihood setup. By parameterizing the mean-variance relationship on data entries, we additionally introduce a dispersion parameter and entry-wise weights to model large variations and missing values. The resulting model is thus not only robust to distribution misspecification but also more flexible and able to capture non-Gaussian covariance structures of the data matrix. Our main focus is on efficient computational approaches to perform the factor analysis. Previous modeling frameworks rely on simulated maximum likelihood (SML) to find the factorization solution, but this method was shown to lead to asymptotic bias when the simulated sample size grows slower than the square root of the sample size $n$, eliminating its practical application for data matrices with large $n$. Borrowing from expectation-maximization (EM) and stochastic gradient descent (SGD), we investigate three estimation procedures based on iterative factorization updates. Our proposed solution does not show asymptotic biases, and scales even better for large matrix factorizations with error $O(1/p)$. To support our findings, we conduct simulation experiments and discuss its application in three case studies.

We study finding and listing $k$-cliques in a graph, for constant $k\geq 3$, a fundamental problem of both theoretical and practical importance. Our main contribution is a new output-sensitive algorithm for listing $k$-cliques in graphs, for arbitrary $k\geq 3$, coupled with lower bounds based on standard fine-grained assumptions, showing that our algorithm's running time is tight. Previously, the only known conditionally optimal output-sensitive algorithms were for the case of $3$-cliques by Bj\"{o}rklund, Pagh, Vassilevska W. and Zwick [ICALP'14]. Typical inputs to subgraph isomorphism or listing problems are measured by the number of nodes $n$ or the number of edges $m$. Our framework is very general in that it gives $k$-clique listing algorithms whose running times are measured in terms of the number of $\ell$-cliques $\Delta_\ell$ in the graph for any $1\leq \ell<k$. This generalizes the typical parameterization in terms of $n$ (the number of $1$-cliques) and $m$ (the number of $2$-cliques). If the matrix multiplication exponent $\omega$ is $2$, and if the size of the output, $\Delta_k$, is sufficiently large, then for every $\ell<k$, the running time of our algorithm for listing $k$-cliques is $$\tilde{O}\left(\Delta_\ell^{\frac{2}{\ell (k - \ell)}}\Delta_k^{1-\frac{2}{k(k-\ell)}}\right).$$ For sufficiently large $\Delta_k$, we prove that this runtime is in fact {\em optimal} for all $1 \leq \ell < k$ under the Exact $k$-Clique hypothesis. In the special cases of $k = 4$ and $5$, our algorithm in terms of $n$ is conditionally optimal for all values of $\Delta_k$ if $\omega = 2$. Moreover, our framework is powerful enough to provide an improvement upon the 19-year old runtimes for $4$ and $5$-clique detection in $m$-edge graphs, as a function of $m$ [Eisenbrand and Grandoni, TCS'04].

For a locally finite set, $A \subseteq \mathbb{R}^d$, the $k$-th Brillouin zone of $a \in A$ is the region of points $x \in \mathbb{R}^d$ for which $\|x-a\|$ is the $k$-th smallest among the Euclidean distances between $x$ and the points in $A$. If $A$ is a lattice, the $k$-th Brillouin zones of the points in $A$ are translates of each other, which tile space. Depending on the value of $k$, they express medium- or long-range order in the set. We study fundamental geometric and combinatorial properties of Brillouin zones, focusing on the integer lattice and its perturbations. Our results include the stability of a Brillouin zone under perturbations, a linear upper bound on the number of chambers in a zone for lattices in $\mathbb{R}^2$, and the convergence of the maximum volume of a chamber to zero for the integer lattice.

Consider a matroid where all elements are labeled with an element in $\mathbb{Z}$. We are interested in finding a base where the sum of the labels is congruent to $g \pmod m$. We show that this problem can be solved in $\tilde{O}(2^{4m} n r^{5/6})$ time for a matroid with $n$ elements and rank $r$, when $m$ is either the product of two primes or a prime power. The algorithm can be generalized to all moduli and, in fact, to all abelian groups if a classic additive combinatorics conjecture by Schrijver and Seymour holds true. We also discuss the optimization version of the problem.

We show that any bounded integral function $f : A \times B \mapsto \{0,1, \dots, \Delta\}$ with rank $r$ has deterministic communication complexity $\Delta^{O(\Delta)} \cdot \sqrt{r} \cdot \log r$, where the rank of $f$ is defined to be the rank of the $A \times B$ matrix whose entries are the function values. As a corollary, we show that any $n$-dimensional polytope that admits a slack matrix with entries from $\{0,1,\dots,\Delta\}$ has extension complexity at most $\exp(\Delta^{O(\Delta)} \cdot \sqrt{n} \cdot \log n)$.

北京阿比特科技有限公司