亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We propose an adaptive model-predictive controller that balances driving the system to a goal state and seeking system observations that are informative with respect to the parameters of a nonlinear autoregressive exogenous model. The controller's objective function is derived from an expected free energy functional and contains information-theoretic terms expressing uncertainty over model parameters and output predictions. Experiments illustrate how parameter uncertainty affects the control objective and evaluate the proposed controller for a pendulum swing-up task.

相關內容

Quantization for a Borel probability measure refers to the idea of estimating a given probability by a discrete probability with support containing a finite number of elements. In this paper, we have considered a Borel probability measure $P$ on $\mathbb R^2$, which has support a nonuniform stretched Sierpi\'{n}ski triangle generated by a set of three contractive similarity mappings on $\mathbb R^2$. For this probability measure, we investigate the optimal sets of $n$-means and the $n$th quantization errors for all positive integers $n$.

Complex system design problems, such as those involved in aerospace engineering, require the use of numerically costly simulation codes in order to predict the performance of the system to be designed. In this context, these codes are often embedded into an optimization process to provide the best design while satisfying the design constraints. Recently, new approaches, called Quality-Diversity, have been proposed in order to enhance the exploration of the design space and to provide a set of optimal diversified solutions with respect to some feature functions. These functions are interesting to assess trade-offs. Furthermore, complex design problems often involve mixed continuous, discrete, and categorical design variables allowing to take into account technological choices in the optimization problem. Existing Bayesian Quality-Diversity approaches suited for intensive high-fidelity simulations are not adapted to mixed variables constrained optimization problems. In order to overcome these limitations, a new Quality-Diversity methodology based on mixed variables Bayesian optimization strategy is proposed in the context of limited simulation budget. Using adapted covariance models and dedicated enrichment strategy for the Gaussian processes in Bayesian optimization, this approach allows to reduce the computational cost up to two orders of magnitude, with respect to classical Quality-Diversity approaches while dealing with discrete choices and the presence of constraints. The performance of the proposed method is assessed on a benchmark of analytical problems as well as on two aerospace system design problems highlighting its efficiency in terms of speed of convergence. The proposed approach provides valuable trade-offs for decision-markers for complex system design.

We investigate pointwise estimation of the function-valued velocity field of a second-order linear SPDE. Based on multiple spatially localised measurements, we construct a weighted augmented MLE and study its convergence properties as the spatial resolution of the observations tends to zero and the number of measurements increases. By imposing H\"older smoothness conditions, we recover the pointwise convergence rate known to be minimax-optimal in the linear regression framework. The optimality of the rate in the current setting is verified by adapting the lower bound ansatz based on the RKHS of local measurements to the nonparametric situation.

We adopt the integral definition of the fractional Laplace operator and study an optimal control problem on Lipschitz domains that involves a fractional elliptic partial differential equation (PDE) as state equation and a control variable that enters the state equation as a coefficient; pointwise constraints on the control variable are considered as well. We establish the existence of optimal solutions and analyze first and, necessary and sufficient, second order optimality conditions. Regularity estimates for optimal variables are also analyzed. We develop two finite element discretization strategies: a semidiscrete scheme in which the control variable is not discretized, and a fully discrete scheme in which the control variable is discretized with piecewise constant functions. For both schemes, we analyze the convergence properties of discretizations and derive error estimates.

The objective of the present work is to develop a robust, yet simple-to-implement algorithm for dynamic vehicle-track-structure-interaction (VTSI) analysis, applicable to trains passing over bridges. The algorithm can be readily implemented in existing bridge analysis software with minimal code modifications. It is based on modeling the bridge and train separately, and coupling them together by means of kinematic constraints. The contact forces between the wheels and the track become Lagrange multipliers in this approach. A direct implementation of such an approach results in spurious oscillations in the contact forces. Two approaches are presented to mitigate these spurious oscillations - (a) a cubic B-spline interpolation of the kinematic constraints in time, and (b) an adaptation of an alternate time-integration scheme originally developed by Bathe. Solutions obtained using this algorithm are verified using a generic differential algebraic equation (DAE) solver. Due to high train speeds and possible track irregularities, wheels can momentarily lose contact with the track. This contact separation is formulated as a Linear Complementarity Problem (LCP). With this formulation, including contact separation in the analysis amounts to replacing a call to a linear equation solver by a call to an LCP solver, a modification of only two steps of the procedure. The focus of this paper is on the computational procedure of VTSI analysis. The main contribution of this paper is recognizing computational issues associated with time-varying kinematic constraints, clearly identifying their cause and developing remedies.

The dynamic mode decomposition (DMD) is a simple and powerful data-driven modeling technique that is capable of revealing coherent spatiotemporal patterns from data. The method's linear algebra-based formulation additionally allows for a variety of optimizations and extensions that make the algorithm practical and viable for real-world data analysis. As a result, DMD has grown to become a leading method for dynamical system analysis across multiple scientific disciplines. PyDMD is a Python package that implements DMD and several of its major variants. In this work, we expand the PyDMD package to include a number of cutting-edge DMD methods and tools specifically designed to handle dynamics that are noisy, multiscale, parameterized, prohibitively high-dimensional, or even strongly nonlinear. We provide a complete overview of the features available in PyDMD as of version 1.0, along with a brief overview of the theory behind the DMD algorithm, information for developers, tips regarding practical DMD usage, and introductory coding examples. All code is available at //github.com/PyDMD/PyDMD .

We present a machine learning framework capable of consistently inferring mathematical expressions of hyperelastic energy functionals for incompressible materials from sparse experimental data and physical laws. To achieve this goal, we propose a polyconvex neural additive model (PNAM) that enables us to express the hyperelastic model in a learnable feature space while enforcing polyconvexity. An upshot of this feature space obtained via the PNAM is that (1) it is spanned by a set of univariate basis that can be re-parametrized with a more complex mathematical form, and (2) the resultant elasticity model is guaranteed to fulfill the polyconvexity, which ensures that the acoustic tensor remains elliptic for any deformation. To further improve the interpretability, we use genetic programming to convert each univariate basis into a compact mathematical expression. The resultant multi-variable mathematical models obtained from this proposed framework are not only more interpretable but are also proven to fulfill physical laws. By controlling the compactness of the learned symbolic form, the machine learning-generated mathematical model also requires fewer arithmetic operations than its deep neural network counterparts during deployment. This latter attribute is crucial for scaling large-scale simulations where the constitutive responses of every integration point must be updated within each incremental time step. We compare our proposed model discovery framework against other state-of-the-art alternatives to assess the robustness and efficiency of the training algorithms and examine the trade-off between interpretability, accuracy, and precision of the learned symbolic hyperelastic models obtained from different approaches. Our numerical results suggest that our approach extrapolates well outside the training data regime due to the precise incorporation of physics-based knowledge.

In the present work, the applicability of physics-augmented neural network (PANN) constitutive models for complex electro-elastic finite element analysis is demonstrated. For the investigations, PANN models for electro-elastic material behavior at finite deformations are calibrated to different synthetically generated datasets, including an analytical isotropic potential, a homogenised rank-one laminate, and a homogenised metamaterial with a spherical inclusion. Subsequently, boundary value problems inspired by engineering applications of composite electro-elastic materials are considered. Scenarios with large electrically induced deformations and instabilities are particularly challenging and thus necessitate extensive investigations of the PANN constitutive models in the context of finite element analyses. First of all, an excellent prediction quality of the model is required for very general load cases occurring in the simulation. Furthermore, simulation of large deformations and instabilities poses challenges on the stability of the numerical solver, which is closely related to the constitutive model. In all cases studied, the PANN models yield excellent prediction qualities and a stable numerical behavior even in highly nonlinear scenarios. This can be traced back to the PANN models excellent performance in learning both the first and second derivatives of the ground truth electro-elastic potentials, even though it is only calibrated on the first derivatives. Overall, this work demonstrates the applicability of PANN constitutive models for the efficient and robust simulation of engineering applications of composite electro-elastic materials.

In this work, an efficient blackbox-type multigrid method is proposed for solving multipoint flux approximations of the Darcy problem on logically rectangular grids. The approach is based on a cell-centered multigrid algorithm, which combines a piecewise constant interpolation and the restriction operator by Wesseling/Khalil with a line-wise relaxation procedure. A local Fourier analysis is performed for the case of a Cartesian uniform grid. The method shows a robust convergence for different full tensor coefficient problems and several rough quadrilateral grids.

We derive a novel uplink-downlink duality principle for optimal joint precoding design under per-transmitter power and information constraints in fading channels. The information constraints model limited sharing of channel state information and data bearing signals across the transmitters. The main application is to cell-free networks, where each access point (AP) must typically satisfy an individual power constraint and form its transmit signal using limited cooperation capabilities. Our duality principle applies to ergodic achievable rates given by the popular hardening bound, and it can be interpreted as a nontrivial generalization of a previous result by Yu and Lan for deterministic channels. This generalization allows us to study involved information constraints going beyond the simple case of cluster-wise centralized precoding covered by previous techniques. Specifically, we show that the optimal joint precoders are, in general, given by an extension of the recently developed team minimum mean-square error method. As a particular yet practical example, we then solve the problem of optimal local precoding design in user-centric cell-free massive MIMO networks subject to per-AP power constraints.

北京阿比特科技有限公司