亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The absence of an algorithm that effectively monitors deep learning models used in side-channel attacks increases the difficulty of evaluation. If the attack is unsuccessful, the question is if we are dealing with a resistant implementation or a faulty model. We propose an early stopping algorithm that reliably recognizes the model's optimal state during training. The novelty of our solution is an efficient implementation of guessing entropy estimation. Additionally, we formalize two conditions, persistence and patience, for a deep learning model to be optimal. As a result, the model converges with fewer traces.

相關內容

Black-box adversarial attacks generate adversarial samples via iterative optimizations using repeated queries. Defending deep neural networks against such attacks has been challenging. In this paper, we propose an efficient Boundary Defense (BD) method which mitigates black-box attacks by exploiting the fact that the adversarial optimizations often need samples on the classification boundary. Our method detects the boundary samples as those with low classification confidence and adds white Gaussian noise to their logits. The method's impact on the deep network's classification accuracy is analyzed theoretically. Extensive experiments are conducted and the results show that the BD method can reliably defend against both soft and hard label black-box attacks. It outperforms a list of existing defense methods. For IMAGENET models, by adding zero-mean white Gaussian noise with standard deviation 0.1 to logits when the classification confidence is less than 0.3, the defense reduces the attack success rate to almost 0 while limiting the classification accuracy degradation to around 1 percent.

Convolutional neural network (CNN) has surpassed traditional methods for medical image classification. However, CNN is vulnerable to adversarial attacks which may lead to disastrous consequences in medical applications. Although adversarial noises are usually generated by attack algorithms, white-noise-induced adversarial samples can exist, and therefore the threats are real. In this study, we propose a novel training method, named IMA, to improve the robust-ness of CNN against adversarial noises. During training, the IMA method increases the margins of training samples in the input space, i.e., moving CNN decision boundaries far away from the training samples to improve robustness. The IMA method is evaluated on publicly available datasets under strong 100-PGD white-box adversarial attacks, and the results show that the proposed method significantly improved CNN classification and segmentation accuracy on noisy data while keeping a high accuracy on clean data. We hope our approach may facilitate the development of robust applications in medical field.

Malicious agents in collaborative learning and outsourced data collection threaten the training of clean models. Backdoor attacks, where an attacker poisons a model during training to successfully achieve targeted misclassification, are a major concern to train-time robustness. In this paper, we investigate a multi-agent backdoor attack scenario, where multiple attackers attempt to backdoor a victim model simultaneously. A consistent backfiring phenomenon is observed across a wide range of games, where agents suffer from a low collective attack success rate. We examine different modes of backdoor attack configurations, non-cooperation / cooperation, joint distribution shifts, and game setups to return an equilibrium attack success rate at the lower bound. The results motivate the re-evaluation of backdoor defense research for practical environments.

Graph neural networks, a popular class of models effective in a wide range of graph-based learning tasks, have been shown to be vulnerable to adversarial attacks. While the majority of the literature focuses on such vulnerability in node-level classification tasks, little effort has been dedicated to analysing adversarial attacks on graph-level classification, an important problem with numerous real-life applications such as biochemistry and social network analysis. The few existing methods often require unrealistic setups, such as access to internal information of the victim models, or an impractically-large number of queries. We present a novel Bayesian optimisation-based attack method for graph classification models. Our method is black-box, query-efficient and parsimonious with respect to the perturbation applied. We empirically validate the effectiveness and flexibility of the proposed method on a wide range of graph classification tasks involving varying graph properties, constraints and modes of attack. Finally, we analyse common interpretable patterns behind the adversarial samples produced, which may shed further light on the adversarial robustness of graph classification models.

As data are increasingly being stored in different silos and societies becoming more aware of data privacy issues, the traditional centralized training of artificial intelligence (AI) models is facing efficiency and privacy challenges. Recently, federated learning (FL) has emerged as an alternative solution and continue to thrive in this new reality. Existing FL protocol design has been shown to be vulnerable to adversaries within or outside of the system, compromising data privacy and system robustness. Besides training powerful global models, it is of paramount importance to design FL systems that have privacy guarantees and are resistant to different types of adversaries. In this paper, we conduct the first comprehensive survey on this topic. Through a concise introduction to the concept of FL, and a unique taxonomy covering: 1) threat models; 2) poisoning attacks and defenses against robustness; 3) inference attacks and defenses against privacy, we provide an accessible review of this important topic. We highlight the intuitions, key techniques as well as fundamental assumptions adopted by various attacks and defenses. Finally, we discuss promising future research directions towards robust and privacy-preserving federated learning.

While existing work in robust deep learning has focused on small pixel-level $\ell_p$ norm-based perturbations, this may not account for perturbations encountered in several real world settings. In many such cases although test data might not be available, broad specifications about the types of perturbations (such as an unknown degree of rotation) may be known. We consider a setup where robustness is expected over an unseen test domain that is not i.i.d. but deviates from the training domain. While this deviation may not be exactly known, its broad characterization is specified a priori, in terms of attributes. We propose an adversarial training approach which learns to generate new samples so as to maximize exposure of the classifier to the attributes-space, without having access to the data from the test domain. Our adversarial training solves a min-max optimization problem, with the inner maximization generating adversarial perturbations, and the outer minimization finding model parameters by optimizing the loss on adversarial perturbations generated from the inner maximization. We demonstrate the applicability of our approach on three types of naturally occurring perturbations -- object-related shifts, geometric transformations, and common image corruptions. Our approach enables deep neural networks to be robust against a wide range of naturally occurring perturbations. We demonstrate the usefulness of the proposed approach by showing the robustness gains of deep neural networks trained using our adversarial training on MNIST, CIFAR-10, and a new variant of the CLEVR dataset.

In federated learning, multiple client devices jointly learn a machine learning model: each client device maintains a local model for its local training dataset, while a master device maintains a global model via aggregating the local models from the client devices. The machine learning community recently proposed several federated learning methods that were claimed to be robust against Byzantine failures (e.g., system failures, adversarial manipulations) of certain client devices. In this work, we perform the first systematic study on local model poisoning attacks to federated learning. We assume an attacker has compromised some client devices, and the attacker manipulates the local model parameters on the compromised client devices during the learning process such that the global model has a large testing error rate. We formulate our attacks as optimization problems and apply our attacks to four recent Byzantine-robust federated learning methods. Our empirical results on four real-world datasets show that our attacks can substantially increase the error rates of the models learnt by the federated learning methods that were claimed to be robust against Byzantine failures of some client devices. We generalize two defenses for data poisoning attacks to defend against our local model poisoning attacks. Our evaluation results show that one defense can effectively defend against our attacks in some cases, but the defenses are not effective enough in other cases, highlighting the need for new defenses against our local model poisoning attacks to federated learning.

In this paper, we investigate the practical challenges of using reinforcement learning agents for question-answering over knowledge graphs. We examine the performance metrics used by state-of-the-art systems and determine that they are inadequate. More specifically, they do not evaluate the systems correctly for situations when there is no answer available and thus agents optimized for these metrics are poor at modeling confidence. We introduce a simple new performance metric for evaluating question-answering agents that is more representative of practical usage conditions, and optimize for this metric by extending the binary reward structure used in prior work to a ternary reward structure which also rewards an agent for not answering a question rather than giving an incorrect answer. We show that this can drastically improve the precision of answered questions while only not answering a limited number of questions that were previously answered correctly.

We propose a new method of estimation in topic models, that is not a variation on the existing simplex finding algorithms, and that estimates the number of topics K from the observed data. We derive new finite sample minimax lower bounds for the estimation of A, as well as new upper bounds for our proposed estimator. We describe the scenarios where our estimator is minimax adaptive. Our finite sample analysis is valid for any number of documents (n), individual document length (N_i), dictionary size (p) and number of topics (K), and both p and K are allowed to increase with n, a situation not handled well by previous analyses. We complement our theoretical results with a detailed simulation study. We illustrate that the new algorithm is faster and more accurate than the current ones, although we start out with a computational and theoretical disadvantage of not knowing the correct number of topics K, while we provide the competing methods with the correct value in our simulations.

Several machine learning models, including neural networks, consistently misclassify adversarial examples---inputs formed by applying small but intentionally worst-case perturbations to examples from the dataset, such that the perturbed input results in the model outputting an incorrect answer with high confidence. Early attempts at explaining this phenomenon focused on nonlinearity and overfitting. We argue instead that the primary cause of neural networks' vulnerability to adversarial perturbation is their linear nature. This explanation is supported by new quantitative results while giving the first explanation of the most intriguing fact about them: their generalization across architectures and training sets. Moreover, this view yields a simple and fast method of generating adversarial examples. Using this approach to provide examples for adversarial training, we reduce the test set error of a maxout network on the MNIST dataset.

北京阿比特科技有限公司