Traditional Insurance, a popular approach of financial risk management, has suffered from the issues of high operational costs, opaqueness, inefficiency and a lack of trust. Recently, blockchain-enabled "parametric insurance" through authorized data sources (e.g., remote sensing and IoT) aims to overcome these issues by automating the underwriting and claim processes of insurance policies on a blockchain. However, the openness of blockchain platforms raises a concern of user privacy, as the private user data in insurance claims on a blockchain may be exposed to outsiders. In this paper, we propose a privacy-preserving parametric insurance framework based on succinct zero-knowledge proofs (zk-SNARKs), whereby an insuree submits a zero-knowledge proof (without revealing any private data) for the validity of an insurance claim and the authenticity of its data sources to a blockchain for transparent verification. Moreover, we extend the recent zk-SNARKs to support robust privacy protection for multiple heterogeneous data sources and improve its efficiency to cut the incurred gas cost by 80%. As a proof-of-concept, we implemented a working prototype of bushfire parametric insurance on real-world blockchain platform Ethereum, and present extensive empirical evaluations.
The proliferation of deep learning applications in healthcare calls for data aggregation across various institutions, a practice often associated with significant privacy concerns. This concern intensifies in medical image analysis, where privacy-preserving mechanisms are paramount due to the data being sensitive in nature. Federated learning, which enables cooperative model training without direct data exchange, presents a promising solution. Nevertheless, the inherent vulnerabilities of federated learning necessitate further privacy safeguards. This study addresses this need by integrating differential privacy, a leading privacy-preserving technique, into a federated learning framework for medical image classification. We introduce a novel differentially private federated learning model and meticulously examine its impacts on privacy preservation and model performance. Our research confirms the existence of a trade-off between model accuracy and privacy settings. However, we demonstrate that strategic calibration of the privacy budget in differential privacy can uphold robust image classification performance while providing substantial privacy protection.
Probabilistic counters are well-known tools often used for space-efficient set cardinality estimation. In this paper, we investigate probabilistic counters from the perspective of preserving privacy. We use the standard, rigid differential privacy notion. The intuition is that the probabilistic counters do not reveal too much information about individuals but provide only general information about the population. Therefore, they can be used safely without violating the privacy of individuals. However, it turned out, that providing a precise, formal analysis of the privacy parameters of probabilistic counters is surprisingly difficult and needs advanced techniques and a very careful approach. We demonstrate that probabilistic counters can be used as a privacy protection mechanism without extra randomization. Namely, the inherent randomization from the protocol is sufficient for protecting privacy, even if the probabilistic counter is used multiple times. In particular, we present a specific privacy-preserving data aggregation protocol based on Morris Counter and MaxGeo Counter. Some of the presented results are devoted to counters that have not been investigated so far from the perspective of privacy protection. Another part is an improvement of previous results. We show how our results can be used to perform distributed surveys and compare the properties of counter-based solutions and a standard Laplace method.
Differential privacy (DP), as a promising privacy-preserving model, has attracted great interest from researchers in recent years. Currently, the study on combination of machine learning and DP is vibrant. In contrast, another widely used artificial intelligence technique, the swarm intelligence (SI) algorithm, has received little attention in the context of DP even though it also triggers privacy concerns. For this reason, this paper attempts to combine DP and SI for the first time, and proposes a general differentially private swarm intelligence algorithm framework (DPSIAF). Based on the exponential mechanism, this framework can easily develop existing SI algorithms into the private versions. As examples, we apply the proposed DPSIAF to four popular SI algorithms, and corresponding analyses demonstrate its effectiveness. More interestingly, the experimental results show that, for our private algorithms, their performance is not strictly affected by the privacy budget, and one of the private algorithms even owns better performance than its non-private version in some cases. These findings are different from the conventional cognition, which indicates the uniqueness of SI with DP. Our study may provide a new perspective on DP, and promote the synergy between metaheuristic optimization community and privacy computing community.
Federated learning is a decentralized machine learning paradigm that allows multiple clients to collaborate by leveraging local computational power and the models transmission. This method reduces the costs and privacy concerns associated with centralized machine learning methods while ensuring data privacy by distributing training data across heterogeneous devices. On the other hand, federated learning has the drawback of data leakage due to the lack of privacy-preserving mechanisms employed during storage, transfer, and sharing, thus posing significant risks to data owners and suppliers. Blockchain technology has emerged as a promising technology for offering secure data-sharing platforms in federated learning, especially in Industrial Internet of Things (IIoT) settings. This survey aims to compare the performance and security of various data privacy mechanisms adopted in blockchain-based federated learning architectures. We conduct a systematic review of existing literature on secure data-sharing platforms for federated learning provided by blockchain technology, providing an in-depth overview of blockchain-based federated learning, its essential components, and discussing its principles, and potential applications. The primary contribution of this survey paper is to identify critical research questions and propose potential directions for future research in blockchain-based federated learning.
Many deep learning applications benefit from using large models with billions of parameters. Training these models is notoriously expensive due to the need for specialized HPC clusters. In this work, we consider alternative setups for training large models: using cheap "preemptible" instances or pooling existing resources from multiple regions. We analyze the performance of existing model-parallel algorithms in these conditions and find configurations where training larger models becomes less communication-intensive. Based on these findings, we propose SWARM parallelism, a model-parallel training algorithm designed for poorly connected, heterogeneous and unreliable devices. SWARM creates temporary randomized pipelines between nodes that are rebalanced in case of failure. We empirically validate our findings and compare SWARM parallelism with existing large-scale training approaches. Finally, we combine our insights with compression strategies to train a large Transformer language model with 1B shared parameters (approximately 13B before sharing) on preemptible T4 GPUs with less than 200Mb/s network.
The popularization of intelligent healthcare devices and big data analytics significantly boosts the development of smart healthcare networks (SHNs). To enhance the precision of diagnosis, different participants in SHNs share health data that contains sensitive information. Therefore, the data exchange process raises privacy concerns, especially when the integration of health data from multiple sources (linkage attack) results in further leakage. Linkage attack is a type of dominant attack in the privacy domain, which can leverage various data sources for private data mining. Furthermore, adversaries launch poisoning attacks to falsify the health data, which leads to misdiagnosing or even physical damage. To protect private health data, we propose a personalized differential privacy model based on the trust levels among users. The trust is evaluated by a defined community density, while the corresponding privacy protection level is mapped to controllable randomized noise constrained by differential privacy. To avoid linkage attacks in personalized differential privacy, we designed a noise correlation decoupling mechanism using a Markov stochastic process. In addition, we build the community model on a blockchain, which can mitigate the risk of poisoning attacks during differentially private data transmission over SHNs. To testify the effectiveness and superiority of the proposed approach, we conduct extensive experiments on benchmark datasets.
Collision avoidance is key for mobile robots and agents to operate safely in the real world. In this work we present SAFER, an efficient and effective collision avoidance system that is able to improve safety by correcting the control commands sent by an operator. It combines real-world reinforcement learning (RL), search-based online trajectory planning, and automatic emergency intervention, e.g. automatic emergency braking (AEB). The goal of the RL is to learn an effective corrective control action that is used in a focused search for collision-free trajectories, and to reduce the frequency of triggering automatic emergency braking. This novel setup enables the RL policy to learn safely and directly on mobile robots in a real-world indoor environment, minimizing actual crashes even during training. Our real-world experiments show that, when compared with several baselines, our approach enjoys a higher average speed, lower crash rate, less emergency intervention, smaller computation overhead, and smoother overall control.
Reinforcement Learning (RL), bolstered by the expressive capabilities of Deep Neural Networks (DNNs) for function approximation, has demonstrated considerable success in numerous applications. However, its practicality in addressing a wide range of real-world scenarios, characterized by diverse and unpredictable dynamics, noisy signals, and large state and action spaces, remains limited. This limitation stems from issues such as poor data efficiency, limited generalization capabilities, a lack of safety guarantees, and the absence of interpretability, among other factors. To overcome these challenges and improve performance across these crucial metrics, one promising avenue is to incorporate additional structural information about the problem into the RL learning process. Various sub-fields of RL have proposed methods for incorporating such inductive biases. We amalgamate these diverse methodologies under a unified framework, shedding light on the role of structure in the learning problem, and classify these methods into distinct patterns of incorporating structure. By leveraging this comprehensive framework, we provide valuable insights into the challenges associated with structured RL and lay the groundwork for a design pattern perspective on RL research. This novel perspective paves the way for future advancements and aids in the development of more effective and efficient RL algorithms that can potentially handle real-world scenarios better.
Artificial intelligence (AI) and deep learning techniques have gained significant attraction in recent years, owing to their remarkable capability of achieving high performance across a broad range of applications. However, a crucial challenge in training such models is the acquisition of vast amounts of data, which is often limited in fields like healthcare. In this domain, medical data is typically scattered across various sources such as hospitals, clinics, and wearable devices. The aggregated data collected from multiple sources in the healthcare domain is sufficient for training advanced deep learning models. However, these sources are frequently hesitant to share such data due to privacy considerations. To address this challenge, researchers have proposed the integration of blockchain and federated learning to develop a system that facilitates the secure sharing of medical records. This work provides a succinct review of the current state of the art in the use of blockchain and federated learning in the decentralized healthcare domain.
Multi-agent reinforcement learning (MARL) is a widely used Artificial Intelligence (AI) technique. However, current studies and applications need to address its scalability, non-stationarity, and trustworthiness. This paper aims to review methods and applications and point out research trends and visionary prospects for the next decade. First, this paper summarizes the basic methods and application scenarios of MARL. Second, this paper outlines the corresponding research methods and their limitations on safety, robustness, generalization, and ethical constraints that need to be addressed in the practical applications of MARL. In particular, we believe that trustworthy MARL will become a hot research topic in the next decade. In addition, we suggest that considering human interaction is essential for the practical application of MARL in various societies. Therefore, this paper also analyzes the challenges while MARL is applied to human-machine interaction.