亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Medical image registration is vital for disease diagnosis and treatment with its ability to merge diverse information of images, which may be captured under different times, angles, or modalities. Although several surveys have reviewed the development of medical image registration, these surveys have not systematically summarized methodologies of existing medical image registration methods. To this end, we provide a comprehensive review of these methods from traditional and deep learning-based directions, aiming to help audiences understand the development of medical image registration quickly. In particular, we review recent advances in retinal image registration at the end of each section, which has not attracted much attention. Additionally, we also discuss the current challenges of retinal image registration and provide insights and prospects for future research.

相關內容

圖像配準是圖像處理研究領域中的一個典型問題和技術難點,其目的在于比較或融合針對同一對象在不同條件下獲取的圖像,例如圖像會來自不同的采集設備,取自不同的時間,不同的拍攝視角等等,有時也需要用到針對不同對象的圖像配準問題。具體地說,對于一組圖像數據集中的兩幅圖像,通過尋找一種空間變換把一幅圖像映射到另一幅圖像,使得兩圖中對應于空間同一位置的點一一對應起來,從而達到信息融合的目的。 該技術在計算機視覺、醫學圖像處理以及材料力學等領域都具有廣泛的應用。根據具體應用的不同,有的側重于通過變換結果融合兩幅圖像,有的側重于研究變換本身以獲得對象的一些力學屬性。

Deep neural networks have reached remarkable achievements in medical image processing tasks, specifically classifying and detecting various diseases. However, when confronted with limited data, these networks face a critical vulnerability, often succumbing to overfitting by excessively memorizing the limited information available. This work addresses the challenge mentioned above by improving the supervised contrastive learning method to reduce the impact of false positives. Unlike most existing methods that rely predominantly on fully supervised learning, our approach leverages the advantages of self-supervised learning in conjunction with employing the available labeled data. We evaluate our method on the BreakHis dataset, which consists of breast cancer histopathology images, and demonstrate an increase in classification accuracy by 1.45% at the image level and 1.42% at the patient level compared to the state-of-the-art method. This improvement corresponds to 93.63% absolute accuracy, highlighting our approach's effectiveness in leveraging data properties to learn more appropriate representation space.

The digitization of traffic sensing infrastructure has significantly accumulated an extensive traffic data warehouse, which presents unprecedented challenges for transportation analytics. The complexities associated with querying large-scale multi-table databases require specialized programming expertise and labor-intensive development. Additionally, traditional analysis methods have focused mainly on numerical data, often neglecting the semantic aspects that could enhance interpretability and understanding. Furthermore, real-time traffic data access is typically limited due to privacy concerns. To bridge this gap, the integration of Large Language Models (LLMs) into the domain of traffic management presents a transformative approach to addressing the complexities and challenges inherent in modern transportation systems. This paper proposes an intelligent online chatbot, TP-GPT, for efficient customized transportation surveillance and management empowered by a large real-time traffic database. The innovative framework leverages contextual and generative intelligence of language models to generate accurate SQL queries and natural language interpretations by employing transportation-specialized prompts, Chain-of-Thought prompting, few-shot learning, multi-agent collaboration strategy, and chat memory. Experimental study demonstrates that our approach outperforms state-of-the-art baselines such as GPT-4 and PaLM 2 on a challenging traffic-analysis benchmark TransQuery. TP-GPT would aid researchers and practitioners in real-time transportation surveillance and management in a privacy-preserving, equitable, and customizable manner.

The demand for precise information on DRAM microarchitectures and error characteristics has surged, driven by the need to explore processing in memory, enhance reliability, and mitigate security vulnerability. Nonetheless, DRAM manufacturers have disclosed only a limited amount of information, making it difficult to find specific information on their DRAM microarchitectures. This paper addresses this gap by presenting more rigorous findings on the microarchitectures of commodity DRAM chips and their impacts on the characteristics of activate-induced bitflips (AIBs), such as RowHammer and RowPress. The previous studies have also attempted to understand the DRAM microarchitectures and associated behaviors, but we have found some of their results to be misled by inaccurate address mapping and internal data swizzling, or lack of a deeper understanding of the modern DRAM cell structure. For accurate and efficient reverse-engineering, we use three tools: AIBs, retention time test, and RowCopy, which can be cross-validated. With these three tools, we first take a macroscopic view of modern DRAM chips to uncover the size, structure, and operation of their subarrays, memory array tiles (MATs), and rows. Then, we analyze AIB characteristics based on the microscopic view of the DRAM microarchitecture, such as 6F^2 cell layout, through which we rectify misunderstandings regarding AIBs and discover a new data pattern that accelerates AIBs. Lastly, based on our findings at both macroscopic and microscopic levels, we identify previously unknown AIB vulnerabilities and propose a simple yet effective protection solution.

Automatic dialogue summarization is a well-established task with the goal of distilling the most crucial information from human conversations into concise textual summaries. However, most existing research has predominantly focused on summarizing factual information, neglecting the affective content, which can hold valuable insights for analyzing, monitoring, or facilitating human interactions. In this paper, we introduce and assess a set of measures PSentScore, aimed at quantifying the preservation of affective content in dialogue summaries. Our findings indicate that state-of-the-art summarization models do not preserve well the affective content within their summaries. Moreover, we demonstrate that a careful selection of the training set for dialogue samples can lead to improved preservation of affective content in the generated summaries, albeit with a minor reduction in content-related metrics.

In the context of temporal image forensics, it is not evident that a neural network, trained on images from different time-slots (classes), exploits solely image age related features. Usually, images taken in close temporal proximity (e.g., belonging to the same age class) share some common content properties. Such content bias can be exploited by a neural network. In this work, a novel approach is proposed that evaluates the influence of image content. This approach is verified using synthetic images (where content bias can be ruled out) with an age signal embedded. Based on the proposed approach, it is shown that a deep learning approach proposed in the context of age classification is most likely highly dependent on the image content. As a possible countermeasure, two different models from the field of image steganalysis, along with three different preprocessing techniques to increase the signal-to-noise ratio (age signal to image content), are evaluated using the proposed method.

Face recognition technology has advanced significantly in recent years due largely to the availability of large and increasingly complex training datasets for use in deep learning models. These datasets, however, typically comprise images scraped from news sites or social media platforms and, therefore, have limited utility in more advanced security, forensics, and military applications. These applications require lower resolution, longer ranges, and elevated viewpoints. To meet these critical needs, we collected and curated the first and second subsets of a large multi-modal biometric dataset designed for use in the research and development (R&D) of biometric recognition technologies under extremely challenging conditions. Thus far, the dataset includes more than 350,000 still images and over 1,300 hours of video footage of approximately 1,000 subjects. To collect this data, we used Nikon DSLR cameras, a variety of commercial surveillance cameras, specialized long-rage R&D cameras, and Group 1 and Group 2 UAV platforms. The goal is to support the development of algorithms capable of accurately recognizing people at ranges up to 1,000 m and from high angles of elevation. These advances will include improvements to the state of the art in face recognition and will support new research in the area of whole-body recognition using methods based on gait and anthropometry. This paper describes methods used to collect and curate the dataset, and the dataset's characteristics at the current stage.

The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving.

Visual dialogue is a challenging task that needs to extract implicit information from both visual (image) and textual (dialogue history) contexts. Classical approaches pay more attention to the integration of the current question, vision knowledge and text knowledge, despising the heterogeneous semantic gaps between the cross-modal information. In the meantime, the concatenation operation has become de-facto standard to the cross-modal information fusion, which has a limited ability in information retrieval. In this paper, we propose a novel Knowledge-Bridge Graph Network (KBGN) model by using graph to bridge the cross-modal semantic relations between vision and text knowledge in fine granularity, as well as retrieving required knowledge via an adaptive information selection mode. Moreover, the reasoning clues for visual dialogue can be clearly drawn from intra-modal entities and inter-modal bridges. Experimental results on VisDial v1.0 and VisDial-Q datasets demonstrate that our model outperforms exiting models with state-of-the-art results.

We propose a novel attention gate (AG) model for medical imaging that automatically learns to focus on target structures of varying shapes and sizes. Models trained with AGs implicitly learn to suppress irrelevant regions in an input image while highlighting salient features useful for a specific task. This enables us to eliminate the necessity of using explicit external tissue/organ localisation modules of cascaded convolutional neural networks (CNNs). AGs can be easily integrated into standard CNN architectures such as the U-Net model with minimal computational overhead while increasing the model sensitivity and prediction accuracy. The proposed Attention U-Net architecture is evaluated on two large CT abdominal datasets for multi-class image segmentation. Experimental results show that AGs consistently improve the prediction performance of U-Net across different datasets and training sizes while preserving computational efficiency. The code for the proposed architecture is publicly available.

Learning similarity functions between image pairs with deep neural networks yields highly correlated activations of embeddings. In this work, we show how to improve the robustness of such embeddings by exploiting the independence within ensembles. To this end, we divide the last embedding layer of a deep network into an embedding ensemble and formulate training this ensemble as an online gradient boosting problem. Each learner receives a reweighted training sample from the previous learners. Further, we propose two loss functions which increase the diversity in our ensemble. These loss functions can be applied either for weight initialization or during training. Together, our contributions leverage large embedding sizes more effectively by significantly reducing correlation of the embedding and consequently increase retrieval accuracy of the embedding. Our method works with any differentiable loss function and does not introduce any additional parameters during test time. We evaluate our metric learning method on image retrieval tasks and show that it improves over state-of-the-art methods on the CUB 200-2011, Cars-196, Stanford Online Products, In-Shop Clothes Retrieval and VehicleID datasets.

北京阿比特科技有限公司