亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Bergsma (2006) proposed a covariance $\kappa$(X,Y) between random variables X and Y. He derived their asymptotic distributions under the null hypothesis of independence between X and Y. The non-null (dependent) case does not seem to have been studied in the literature. We derive several alternate expressions for $\kappa$. One of them leads us to a very intuitive estimator of $\kappa$(X,Y) that is a nice function of four naturally arising U-statistics. We derive the exact finite sample relation between all three estimates. The asymptotic distribution of our estimator, and hence also of the other two estimators, in the non-null (dependence) case, is then obtained by using the U-statistics central limit theorem. For specific parametric bivariate distributions, the value of $\kappa$ can be derived in terms of the natural dependence parameters of these distributions. In particular, we derive the formula for $\kappa$ when (X,Y) are distributed as Gumbel's bivariate exponential. We bring out various aspects of these estimators through extensive simulations from several prominent bivariate distributions. In particular, we investigate the empirical relationship between $\kappa$ and the dependence parameters, the distributional properties of the estimators, and the accuracy of these estimators. We also investigate the powers of these measures for testing independence, compare these among themselves, and with other well known such measures. Based on these exercises, the proposed estimator seems as good or better than its competitors both in terms of power and computing efficiency.

相關內容

The starting point for much of multivariate analysis (MVA) is an $n\times p$ data matrix whose $n$ rows represent observations and whose $p$ columns represent variables. Some multivariate data sets, however, may be best conceptualized not as $n$ discrete $p$-variate observations, but as $p$ curves or functions defined on a common time interval. We introduce a framework for extending techniques of multivariate analysis to such settings. The proposed framework rests on the assumption that the curves can be represented as linear combinations of basis functions such as B-splines. This is formally identical to the Ramsay-Silverman representation of functional data; but whereas functional data analysis extends MVA to the case of observations that are curves rather than vectors -- heuristically, $n\times p$ data with $p$ infinite -- we are instead concerned with what happens when $n$ is infinite. We describe how to translate the classical MVA methods of covariance and correlation estimation, principal component analysis, Fisher's linear discriminant analysis, and $k$-means clustering to the continuous-time setting. We illustrate the methods with a novel perspective on a well-known Canadian weather data set, and with applications to neurobiological and environmetric data. The methods are implemented in the publicly available R package \texttt{ctmva}.

Coping with distributional shifts is an important part of transfer learning methods in order to perform well in real-life tasks. However, most of the existing approaches in this area either focus on an ideal scenario in which the data does not contain noises or employ a complicated training paradigm or model design to deal with distributional shifts. In this paper, we revisit the robustness of the minimum error entropy (MEE) criterion, a widely used objective in statistical signal processing to deal with non-Gaussian noises, and investigate its feasibility and usefulness in real-life transfer learning regression tasks, where distributional shifts are common. Specifically, we put forward a new theoretical result showing the robustness of MEE against covariate shift. We also show that by simply replacing the mean squared error (MSE) loss with the MEE on basic transfer learning algorithms such as fine-tuning and linear probing, we can achieve competitive performance with respect to state-of-the-art transfer learning algorithms. We justify our arguments on both synthetic data and 5 real-world time-series data.

Current statistical methods in differential proteomics analysis generally leave aside several challenges, such as missing values, correlations between peptide intensities and uncertainty quantification. Moreover, they provide point estimates, such as the mean intensity for a given peptide or protein in a given condition. The decision of whether an analyte should be considered as differential is then based on comparing the p-value to a significance threshold, usually 5%. In the state-of-the-art limma approach, a hierarchical model is used to deduce the posterior distribution of the variance estimator for each analyte. The expectation of this distribution is then used as a moderated estimation of variance and is injected directly into the expression of the t-statistic. However, instead of merely relying on the moderated estimates, we could provide more powerful and intuitive results by leveraging a fully Bayesian approach and hence allow the quantification of uncertainty. The present work introduces this idea by taking advantage of standard results from Bayesian inference with conjugate priors in hierarchical models to derive a methodology tailored to handle multiple imputation contexts. Furthermore, we aim to tackle a more general problem of multivariate differential analysis, to account for possible inter-peptide correlations. By defining a hierarchical model with prior distributions on both mean and variance parameters, we achieve a global quantification of uncertainty for differential analysis. The inference is thus performed by computing the posterior distribution for the difference in mean peptide intensities between two experimental conditions. In contrast to more flexible models that can be achieved with hierarchical structures, our choice of conjugate priors maintains analytical expressions for direct sampling from posterior distributions without requiring expensive MCMC methods.

We define the relative fractional independence number of two graphs, $G$ and $H$, as $$\alpha^*(G|H)=\max_{W}\frac{\alpha(G\boxtimes W)}{\alpha(H\boxtimes W)},$$ where the maximum is taken over all graphs $W$, $G\boxtimes W$ is the strong product of $G$ and $W$, and $\alpha$ denotes the independence number. We give a non-trivial linear program to compute $\alpha^*(G|H)$ and discuss some of its properties. We show that $$\alpha^*(G|H)\geq \frac{X(G)}{X(H)},$$ where $X(G)$ can be the independence number, the zero-error Shannon capacity, the fractional independence number, the Lov'{a}sz number, or the Schrijver's or Szegedy's variants of the Lov'{a}sz number of a graph $G$. This inequality is the first explicit non-trivial upper bound on the ratio of the invariants of two arbitrary graphs, as mentioned earlier, which can also be used to obtain upper or lower bounds for these invariants. As explicit applications, we present new upper bounds for the ratio of the zero-error Shannon capacity of two Cayley graphs and compute new lower bounds on the Shannon capacity of certain Johnson graphs (yielding the exact value of their Haemers number). Moreover, we show that the relative fractional independence number can be used to present a stronger version of the well-known No-Homomorphism Lemma. The No-Homomorphism Lemma is widely used to show the non-existence of a homomorphism between two graphs and is also used to give an upper bound on the independence number of a graph. Our extension of the No-Homomorphism Lemma is computationally more accessible than its original version.

We show how to find all $k$ marked elements in a list of size $N$ using the optimal number $O(\sqrt{N k})$ of quantum queries and only a polylogarithmic overhead in the gate complexity, in the setting where one has a small quantum memory. Previous algorithms either incurred a factor $k$ overhead in the gate complexity, or had an extra factor $\log(k)$ in the query complexity. We then consider the problem of finding a multiplicative $\delta$-approximation of $s = \sum_{i=1}^N v_i$ where $v=(v_i) \in [0,1]^N$, given quantum query access to a binary description of $v$. We give an algorithm that does so, with probability at least $1-\rho$, using $O(\sqrt{N \log(1/\rho) / \delta})$ quantum queries (under mild assumptions on $\rho$). This quadratically improves the dependence on $1/\delta$ and $\log(1/\rho)$ compared to a straightforward application of amplitude estimation. To obtain the improved $\log(1/\rho)$ dependence we use the first result.

In many practical scenarios, including finance, environmental sciences, system reliability, etc., it is often of interest to study the various notion of negative dependence among the observed variables. A new bivariate copula is proposed for modeling negative dependence between two random variables that complies with most of the popular notions of negative dependence reported in the literature. Specifically, the Spearman's rho and the Kendall's tau for the proposed copula have a simple one-parameter form with negative values in the full range. Some important ordering properties comparing the strength of negative dependence with respect to the parameter involved are considered. Simple examples of the corresponding bivariate distributions with popular marginals are presented. Application of the proposed copula is illustrated using a real data set on air quality in the New York City, USA.

Computational methods for thermal radiative transfer problems exhibit high computational costs and a prohibitive memory footprint when the spatial and directional domains are finely resolved. A strategy to reduce such computational costs is dynamical low-rank approximation (DLRA), which represents and evolves the solution on a low-rank manifold, thereby significantly decreasing computational and memory requirements. Efficient discretizations for the DLRA evolution equations need to be carefully constructed to guarantee stability while enabling mass conservation. In this work, we focus on the Su-Olson closure and derive a stable discretization through an implicit coupling of energy and radiation density. Moreover, we propose a rank-adaptive strategy to preserve local mass conservation. Numerical results are presented which showcase the accuracy and efficiency of the proposed method.

Density-functional theory (DFT) has revolutionized computer simulations in chemistry and material science. A faithful implementation of the theory requires self-consistent calculations. However, this effort involves repeatedly diagonalizing the Hamiltonian, for which a classical algorithm typically requires a computational complexity that scales cubically with respect to the number of electrons. This limits DFT's applicability to large-scale problems with complex chemical environments and microstructures. This article presents a quantum algorithm that has a linear scaling with respect to the number of atoms, which is much smaller than the number of electrons. Our algorithm leverages the quantum singular value transformation (QSVT) to generate a quantum circuit to encode the density-matrix, and an estimation method for computing the output electron density. In addition, we present a randomized block coordinate fixed-point method to accelerate the self-consistent field calculations by reducing the number of components of the electron density that needs to be estimated. The proposed framework is accompanied by a rigorous error analysis that quantifies the function approximation error, the statistical fluctuation, and the iteration complexity. In particular, the analysis of our self-consistent iterations takes into account the measurement noise from the quantum circuit. These advancements offer a promising avenue for tackling large-scale DFT problems, enabling simulations of complex systems that were previously computationally infeasible.

Mixtures of factor analysers (MFA) models represent a popular tool for finding structure in data, particularly high-dimensional data. While in most applications the number of clusters, and especially the number of latent factors within clusters, is mostly fixed in advance, in the recent literature models with automatic inference on both the number of clusters and latent factors have been introduced. The automatic inference is usually done by assigning a nonparametric prior and allowing the number of clusters and factors to potentially go to infinity. The MCMC estimation is performed via an adaptive algorithm, in which the parameters associated with the redundant factors are discarded as the chain moves. While this approach has clear advantages, it also bears some significant drawbacks. Running a separate factor-analytical model for each cluster involves matrices of changing dimensions, which can make the model and programming somewhat cumbersome. In addition, discarding the parameters associated with the redundant factors could lead to a bias in estimating cluster covariance matrices. At last, identification remains problematic for infinite factor models. The current work contributes to the MFA literature by providing for the automatic inference on the number of clusters and the number of cluster-specific factors while keeping both cluster and factor dimensions finite. This allows us to avoid many of the aforementioned drawbacks of the infinite models. For the automatic inference on the cluster structure, we employ the dynamic mixture of finite mixtures (MFM) model. Automatic inference on cluster-specific factors is performed by assigning an exchangeable shrinkage process (ESP) prior to the columns of the factor loading matrices. The performance of the model is demonstrated on several benchmark data sets as well as real data applications.

In this paper, we investigate the impact of numerical instability on the reliability of sampling, density evaluation, and evidence lower bound (ELBO) estimation in variational flows. We first empirically demonstrate that common flows can exhibit a catastrophic accumulation of error: the numerical flow map deviates significantly from the exact map -- which affects sampling -- and the numerical inverse flow map does not accurately recover the initial input -- which affects density and ELBO computations. Surprisingly though, we find that results produced by flows are often accurate enough for applications despite the presence of serious numerical instability. In this work, we treat variational flows as dynamical systems, and leverage shadowing theory to elucidate this behavior via theoretical guarantees on the error of sampling, density evaluation, and ELBO estimation. Finally, we develop and empirically test a diagnostic procedure that can be used to validate results produced by numerically unstable flows in practice.

北京阿比特科技有限公司