亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we investigate the impact of numerical instability on the reliability of sampling, density evaluation, and evidence lower bound (ELBO) estimation in variational flows. We first empirically demonstrate that common flows can exhibit a catastrophic accumulation of error: the numerical flow map deviates significantly from the exact map -- which affects sampling -- and the numerical inverse flow map does not accurately recover the initial input -- which affects density and ELBO computations. Surprisingly though, we find that results produced by flows are often accurate enough for applications despite the presence of serious numerical instability. In this work, we treat variational flows as dynamical systems, and leverage shadowing theory to elucidate this behavior via theoretical guarantees on the error of sampling, density evaluation, and ELBO estimation. Finally, we develop and empirically test a diagnostic procedure that can be used to validate results produced by numerically unstable flows in practice.

相關內容

In this paper, we study functional approximations where we choose the so-called radial basis function method and more specifically, quasi-interpolation. From the various available approaches to the latter, we form new quasi-Lagrange functions when the orders of the singularities of the radial function's Fourier transforms at zero do not match the parity of the dimension of the space, and therefore new expansions and coefficients are needed to overcome this problem. We develop explicit constructions of infinite Fourier expansions that provide these coefficients and make an extensive comparison of the approximation qualities and - with a particular focus - polynomial precision and uniform approximation order of the various formulae. One of the interesting observations concerns the link between algebraic conditions of expansion coefficients and analytic properties of localness and convergence.

In this paper, we propose a reduced-dimensional smoothed particle hydrodynamics (SPH) formulation for quasi-static and dynamic analyses of plate and shell structures undergoing finite deformation and large rotation. By exploiting Uflyand-Mindlin plate theory, the present surface-particle formulation is able to resolve the thin structures by using only one layer of particles at the mid-surface. To resolve the geometric non-linearity and capture finite deformation and large rotation, two reduced-dimensional linear-reproducing correction matrices are introduced, and weighted non-singularity conversions between the rotation angle and pseudo normal are formulated. A new non-isotropic Kelvin-Voigt damping is proposed especially for the both thin and moderately thick plate and shell structures to increase the numerical stability. In addition, a shear-scaled momentum-conserving hourglass control algorithm with an adaptive limiter is introduced to suppress the mismatches between the particle position and pseudo normal and those estimated with the deformation gradient. A comprehensive set of test problems, for which the analytical or numerical results from literature or those of the volume-particle SPH model are available for quantitative and qualitative comparison, are examined to demonstrate the accuracy and stability of the present method.

In this paper, we propose an effective computational approach to analyze and active control of geometrically nonlinear responses of functionally graded (FG) porous plates with graphene nanoplatelets (GPLs) reinforcement integrated with piezoelectric layers. The key concept behind this work is to utilize isogeometric analysis (IGA) based on B\'ezier extraction technique and $C^0$-type higher-order shear deformation theory ($C^0$-HSDT). By applying B\'ezier extraction, the original Non-Uniform Rational B-Spline (NURBS) control meshes can be transformed into B\'ezier elements which allow us to inherit the standard numerical procedure like the standard finite element method (FEM). In this scenario, the approximation of mechanical displacement field is calculated via $C^0$-HSDT whilst the electric potential field is considered as a linear function across the thickness of each piezoelectric sublayer. The FG plate includes internal pores and GPLs dispersed into metal matrix either uniformly or non-uniformly along plate's thickness. To control responses of structures, the top and bottom surfaces of FG plate are firmly bonded with piezoelectric layers which are considered as sensor and actuator layers. The geometrically nonlinear equations are solved by Newton-Raphson iterative procedure and Newmark's integration. The influence of porosity coefficient, weight fraction of GPLs as well as external electrical voltage on geometrically nonlinear behaviors of plate structures with various distributions of porosity and GPLs are thoroughly investigated. A constant displacement and velocity feedback control approaches are then adopted to actively control geometrically nonlinear static and dynamic responses, where structural damping effect is taken into account, based on a closed-loop control with sensor and actuator layers.

In this paper, we propose two efficient fully-discrete schemes for Q-tensor flow of liquid crystals by using the first- and second-order stabilized exponential scalar auxiliary variable (sESAV) approach in time and the finite difference method for spatial discretization. The modified discrete energy dissipation laws are unconditionally satisfied for both two constructed schemes. A particular feature is that, for two-dimensional (2D) and a kind of three-dimensional (3D) Q-tensor flows, the unconditional maximum-bound-principle (MBP) preservation of the constructed first-order scheme is successfully established, and the proposed second-order scheme preserves the discrete MBP property with a mild restriction on the time-step sizes. Furthermore, we rigorously derive the corresponding error estimates for the fully-discrete second-order schemes by using the built-in stability results. Finally, various numerical examples validating the theoretical results, such as the orientation of liquid crystal in 2D and 3D, are presented for the constructed schemes.

This paper presents a numerical study of immiscible, compressible two-phase flows in porous media, that takes into account heterogeneity, gravity, anisotropy, and injection/production wells. We formulate a fully implicit stable discontinuous Galerkin solver for this system that is accurate, that respects the maximum principle for the approximation of saturation, and that is locally mass conservative. To completely eliminate the overshoot and undershoot phenomena, we construct a flux limiter that produces bound-preserving elementwise average of the saturation. The addition of a slope limiter allows to recover a pointwise bound-preserving discrete saturation. Numerical results show that both maximum principle and monotonicity of the solution are satisfied. The proposed flux limiter does not impact the local mass error and the number of nonlinear solver iterations.

In this paper, we introduce a new first-order mixture integer-valued threshold autoregressive process, based on the binomial and negative binomial thinning operators. Basic probabilistic and statistical properties of this model are discussed. Conditional least squares (CLS) and conditional maximum likelihood (CML) estimators are derived and the asymptotic properties of the estimators are established. The inference for the threshold parameter is obtained based on the CLS and CML score functions. Moreover, the Wald test is applied to detect the existence of the piecewise structure. Simulation studies are considered, along with an application: the number of criminal mischief incidents in the Pittsburgh dataset.

In this paper, we present a pipeline for image extraction from historical documents using foundation models, and evaluate text-image prompts and their effectiveness on humanities datasets of varying levels of complexity. The motivation for this approach stems from the high interest of historians in visual elements printed alongside historical texts on the one hand, and from the relative lack of well-annotated datasets within the humanities when compared to other domains. We propose a sequential approach that relies on GroundDINO and Meta's Segment-Anything-Model (SAM) to retrieve a significant portion of visual data from historical documents that can then be used for downstream development tasks and dataset creation, as well as evaluate the effect of different linguistic prompts on the resulting detections.

In this paper, we evaluate the different fully homomorphic encryption schemes, propose an implementation, and numerically analyze the applicability of gradient descent algorithms to solve quadratic programming in a homomorphic encryption setup. The limit on the multiplication depth of homomorphic encryption circuits is a major challenge for iterative procedures such as gradient descent algorithms. Our analysis not only quantifies these limitations on prototype examples, thus serving as a benchmark for future investigations, but also highlights additional trade-offs like the ones pertaining the choice of gradient descent or accelerated gradient descent methods, opening the road for the use of homomorphic encryption techniques in iterative procedures widely used in optimization based control. In addition, we argue that, among the available homomorphic encryption schemes, the one adopted in this work, namely CKKS, is the only suitable scheme for implementing gradient descent algorithms. The choice of the appropriate step size is crucial to the convergence of the procedure. The paper shows firsthand the feasibility of homomorphically encrypted gradient descent algorithms.

We develop new tools to study landscapes in nonconvex optimization. Given one optimization problem, we pair it with another by smoothly parametrizing the domain. This is either for practical purposes (e.g., to use smooth optimization algorithms with good guarantees) or for theoretical purposes (e.g., to reveal that the landscape satisfies a strict saddle property). In both cases, the central question is: how do the landscapes of the two problems relate? More precisely: how do desirable points such as local minima and critical points in one problem relate to those in the other problem? A key finding in this paper is that these relations are often determined by the parametrization itself, and are almost entirely independent of the cost function. Accordingly, we introduce a general framework to study parametrizations by their effect on landscapes. The framework enables us to obtain new guarantees for an array of problems, some of which were previously treated on a case-by-case basis in the literature. Applications include: optimizing low-rank matrices and tensors through factorizations; solving semidefinite programs via the Burer-Monteiro approach; training neural networks by optimizing their weights and biases; and quotienting out symmetries.

In this paper, we study the low-rank matrix completion problem, a class of machine learning problems, that aims at the prediction of missing entries in a partially observed matrix. Such problems appear in several challenging applications such as collaborative filtering, image processing, and genotype imputation. We compare the Bayesian approaches and a recently introduced de-biased estimator which provides a useful way to build confidence intervals of interest. From a theoretical viewpoint, the de-biased estimator comes with a sharp minimax-optimal rate of estimation error whereas the Bayesian approach reaches this rate with an additional logarithmic factor. Our simulation studies show originally interesting results that the de-biased estimator is just as good as the Bayesian estimators. Moreover, Bayesian approaches are much more stable and can outperform the de-biased estimator in the case of small samples. In addition, we also find that the empirical coverage rate of the confidence intervals obtained by the de-biased estimator for an entry is absolutely lower than of the considered credible interval. These results suggest further theoretical studies on the estimation error and the concentration of Bayesian methods as they are quite limited up to present.

北京阿比特科技有限公司