In this paper, we propose an effective computational approach to analyze and active control of geometrically nonlinear responses of functionally graded (FG) porous plates with graphene nanoplatelets (GPLs) reinforcement integrated with piezoelectric layers. The key concept behind this work is to utilize isogeometric analysis (IGA) based on B\'ezier extraction technique and $C^0$-type higher-order shear deformation theory ($C^0$-HSDT). By applying B\'ezier extraction, the original Non-Uniform Rational B-Spline (NURBS) control meshes can be transformed into B\'ezier elements which allow us to inherit the standard numerical procedure like the standard finite element method (FEM). In this scenario, the approximation of mechanical displacement field is calculated via $C^0$-HSDT whilst the electric potential field is considered as a linear function across the thickness of each piezoelectric sublayer. The FG plate includes internal pores and GPLs dispersed into metal matrix either uniformly or non-uniformly along plate's thickness. To control responses of structures, the top and bottom surfaces of FG plate are firmly bonded with piezoelectric layers which are considered as sensor and actuator layers. The geometrically nonlinear equations are solved by Newton-Raphson iterative procedure and Newmark's integration. The influence of porosity coefficient, weight fraction of GPLs as well as external electrical voltage on geometrically nonlinear behaviors of plate structures with various distributions of porosity and GPLs are thoroughly investigated. A constant displacement and velocity feedback control approaches are then adopted to actively control geometrically nonlinear static and dynamic responses, where structural damping effect is taken into account, based on a closed-loop control with sensor and actuator layers.
We present a machine-learning strategy for finite element analysis of solid mechanics wherein we replace complex portions of a computational domain with a data-driven surrogate. In the proposed strategy, we decompose a computational domain into an "outer" coarse-scale domain that we resolve using a finite element method (FEM) and an "inner" fine-scale domain. We then develop a machine-learned (ML) model for the impact of the inner domain on the outer domain. In essence, for solid mechanics, our machine-learned surrogate performs static condensation of the inner domain degrees of freedom. This is achieved by learning the map from (virtual) displacements on the inner-outer domain interface boundary to forces contributed by the inner domain to the outer domain on the same interface boundary. We consider two such mappings, one that directly maps from displacements to forces without constraints, and one that maps from displacements to forces by virtue of learning a symmetric positive semi-definite (SPSD) stiffness matrix. We demonstrate, in a simplified setting, that learning an SPSD stiffness matrix results in a coarse-scale problem that is well-posed with a unique solution. We present numerical experiments on several exemplars, ranging from finite deformations of a cube to finite deformations with contact of a fastener-bushing geometry. We demonstrate that enforcing an SPSD stiffness matrix is critical for accurate FEM-ML coupled simulations, and that the resulting methods can accurately characterize out-of-sample loading configurations with significant speedups over the standard FEM simulations.
In this work, we introduce a new acquisition function for sequential sampling to efficiently quantify rare-event statistics of an input-to-response (ItR) system with given input probability and expensive function evaluations. Our acquisition is a generalization of the likelihood-weighted (LW) acquisition that was initially designed for the same purpose and then extended to many other applications. The improvement in our acquisition comes from the generalized form with two additional parameters, by varying which one can target and address two weaknesses of the original LW acquisition: (1) that the input space associated with rare-event responses is not sufficiently stressed in sampling; (2) that the surrogate model (generated from samples) may have significant deviation from the true ItR function, especially for cases with complex ItR function and limited number of samples. In addition, we develop a critical procedure in Monte-Carlo discrete optimization of the acquisition function, which achieves orders of magnitude acceleration compared to existing approaches for such type of problems. The superior performance of our new acquisition to the original LW acquisition is demonstrated in a number of test cases, including some cases that were designed to show the effectiveness of the original LW acquisition. We finally apply our method to an engineering example to quantify the rare-event roll-motion statistics of a ship in a random sea.
In this paper we present a complete framework for the energy-stable simulation of stratified incompressible flow in channels, using the one-dimensional two-fluid model. Building on earlier energy-conserving work on the basic two-fluid model, our new framework includes diffusion, friction, and surface tension. We show that surface tension can be added in an energy-conserving manner, and that diffusion and friction have a strictly dissipative effect on the energy. We then propose spatial discretizations for these terms such that a semi-discrete model is obtained that has the same conservation properties as the continuous model. Additionally, we propose a new energy-stable advective flux scheme that is energy-conserving in smooth regions of the flow and strictly dissipative where sharp gradients appear. This is obtained by combining, using flux limiters, a previously developed energy-conserving advective flux with a novel first-order upwind scheme that is shown to be strictly dissipative. The complete framework, with diffusion, surface tension, and a bounded energy, is linearly stable to short wavelength perturbations, and exhibits nonlinear damping near shocks. The model yields smoothly converging numerical solutions, even under conditions for which the basic two-fluid model is ill-posed. With our explicit expressions for the dissipation rates, we are able to attribute the nonlinear damping to the different dissipation mechanisms, and compare their effects.
In this paper, we present a novel numerical scheme for simulating deformable and extensible capsules suspended in a Stokesian fluid. The main feature of our scheme is a partition-of-unity (POU) based representation of the surface that enables asymptotically faster computations compared to spherical-harmonics based representations. We use a boundary integral equation formulation to represent and discretize hydrodynamic interactions. The boundary integrals are weakly singular. We use the quadrature scheme based on the regularized Stokes kernels. We also use partition-of unity based finite differences that are required for the computational of interfacial forces. Given an N-point surface discretization, our numerical scheme has fourth-order accuracy and O(N) asymptotic complexity, which is an improvement over the O(N^2 log(N)) complexity of a spherical harmonics based spectral scheme that uses product-rule quadratures. We use GPU acceleration and demonstrate the ability of our code to simulate the complex shapes with high resolution. We study capsules that resist shear and tension and their dynamics in shear and Poiseuille flows. We demonstrate the convergence of the scheme and compare with the state of the art.
In this study, we develop a novel framework to assess health risks due to heat hazards across various localities (zip codes) across the state of Maryland with the help of two commonly used indicators i.e. exposure and vulnerability. Our approach quantifies each of the two aforementioned indicators by developing their corresponding feature vectors and subsequently computes indicator-specific reference vectors that signify a high risk environment by clustering the data points at the tail-end of an empirical risk spectrum. The proposed framework circumvents the information-theoretic entropy based aggregation methods whose usage varies with different views of entropy that are subjective in nature and more importantly generalizes the notion of risk-valuation using cosine similarity with unknown reference points.
In this paper, we study multimodal coreference resolution, specifically where a longer descriptive text, i.e., a narration is paired with an image. This poses significant challenges due to fine-grained image-text alignment, inherent ambiguity present in narrative language, and unavailability of large annotated training sets. To tackle these challenges, we present a data efficient semi-supervised approach that utilizes image-narration pairs to resolve coreferences and narrative grounding in a multimodal context. Our approach incorporates losses for both labeled and unlabeled data within a cross-modal framework. Our evaluation shows that the proposed approach outperforms strong baselines both quantitatively and qualitatively, for the tasks of coreference resolution and narrative grounding.
Motivated by conditional independence testing, an essential step in constraint-based causal discovery algorithms, we study the nonparametric Von Mises estimator for the entropy of multivariate distributions built on a kernel density estimator. We establish an exponential concentration inequality for this estimator. We design a test for conditional independence (CI) based on our estimator, called VM-CI, which achieves optimal parametric rates under smoothness assumptions. Leveraging the exponential concentration, we prove a tight upper bound for the overall error of VM-CI. This, in turn, allows us to characterize the sample complexity of any constraint-based causal discovery algorithm that uses VM-CI for CI tests. To the best of our knowledge, this is the first sample complexity guarantee for causal discovery for continuous variables. Furthermore, we empirically show that VM-CI outperforms other popular CI tests in terms of either time or sample complexity (or both), which translates to a better performance in structure learning as well.
In this paper we introduce a multilevel Picard approximation algorithm for general semilinear parabolic PDEs with gradient-dependent nonlinearities whose coefficient functions do not need to be constant. We also provide a full convergence and complexity analysis of our algorithm. To obtain our main results, we consider a particular stochastic fixed-point equation (SFPE) motivated by the Feynman-Kac representation and the Bismut-Elworthy-Li formula. We show that the PDE under consideration has a unique viscosity solution which coincides with the first component of the unique solution of the stochastic fixed-point equation. Moreover, if the PDE admits a strong solution, then the gradient of the unique solution of the PDE coincides with the second component of the unique solution of the stochastic fixed-point equation.
In this paper, we propose a low rank approximation method for efficiently solving stochastic partial differential equations. Specifically, our method utilizes a novel low rank approximation of the stiffness matrices, which can significantly reduce the computational load and storage requirements associated with matrix inversion without losing accuracy. To demonstrate the versatility and applicability of our method, we apply it to address two crucial uncertainty quantification problems: stochastic elliptic equations and optimal control problems governed by stochastic elliptic PDE constraints. Based on varying dimension reduction ratios, our algorithm exhibits the capability to yield a high precision numerical solution for stochastic partial differential equations, or provides a rough representation of the exact solutions as a pre-processing phase. Meanwhile, our algorithm for solving stochastic optimal control problems allows a diverse range of gradient-based unconstrained optimization methods, rendering it particularly appealing for computationally intensive large-scale problems. Numerical experiments are conducted and the results provide strong validation of the feasibility and effectiveness of our algorithm.
In this paper we develop a novel neural network model for predicting implied volatility surface. Prior financial domain knowledge is taken into account. A new activation function that incorporates volatility smile is proposed, which is used for the hidden nodes that process the underlying asset price. In addition, financial conditions, such as the absence of arbitrage, the boundaries and the asymptotic slope, are embedded into the loss function. This is one of the very first studies which discuss a methodological framework that incorporates prior financial domain knowledge into neural network architecture design and model training. The proposed model outperforms the benchmarked models with the option data on the S&P 500 index over 20 years. More importantly, the domain knowledge is satisfied empirically, showing the model is consistent with the existing financial theories and conditions related to implied volatility surface.