In this paper, we propose a low rank approximation method for efficiently solving stochastic partial differential equations. Specifically, our method utilizes a novel low rank approximation of the stiffness matrices, which can significantly reduce the computational load and storage requirements associated with matrix inversion without losing accuracy. To demonstrate the versatility and applicability of our method, we apply it to address two crucial uncertainty quantification problems: stochastic elliptic equations and optimal control problems governed by stochastic elliptic PDE constraints. Based on varying dimension reduction ratios, our algorithm exhibits the capability to yield a high precision numerical solution for stochastic partial differential equations, or provides a rough representation of the exact solutions as a pre-processing phase. Meanwhile, our algorithm for solving stochastic optimal control problems allows a diverse range of gradient-based unconstrained optimization methods, rendering it particularly appealing for computationally intensive large-scale problems. Numerical experiments are conducted and the results provide strong validation of the feasibility and effectiveness of our algorithm.
This paper focuses on the randomized Milstein scheme for approximating solutions to stochastic Volterra integral equations with weakly singular kernels, where the drift coefficients are non-differentiable. An essential component of the error analysis involves the utilization of randomized quadrature rules for stochastic integrals to avoid the Taylor expansion in drift coefficient functions. Finally, we implement the simulation of multiple singular stochastic integral in the numerical experiment by applying the Riemann-Stieltjes integral.
In this paper, we propose an alternating optimization method to address a time-optimal trajectory generation problem. Different from the existing solutions, our approach introduces a new formulation that minimizes the overall trajectory running time while maintaining the polynomial smoothness constraints and incorporating hard limits on motion derivatives to ensure feasibility. To address this problem, an alternating peak-optimization method is developed, which splits the optimization process into two sub-optimizations: the first sub-optimization optimizes polynomial coefficients for smoothness, and the second sub-optimization adjusts the time allocated to each trajectory segment. These are alternated until a feasible minimum-time solution is found. We offer a comprehensive set of simulations and experiments to showcase the superior performance of our approach in comparison to existing methods. A collection of demonstration videos with real drone flying experiments can be accessed at //www.youtube.com/playlist?list=PLQGtPFK17zUYkwFT-fr0a8E49R8Uq712l .
We consider the low-rank alternating directions implicit (ADI) iteration for approximately solving large-scale algebraic Sylvester equations. Inside every iteration step of this iterative process a pair of linear systems of equations has to be solved. We investigate the situation when those inner linear systems are solved inexactly by an iterative methods such as, for example, preconditioned Krylov subspace methods. The main contribution of this work are thresholds for the required accuracies regarding the inner linear systems which dictate when the employed inner Krylov subspace methods can be safely terminated. The goal is to save computational effort by solving the inner linear system as inaccurate as possible without endangering the functionality of the low-rank Sylvester-ADI method. Ideally, the inexact ADI method mimics the convergence behaviour of the more expensive exact ADI method, where the linear systems are solved directly. Alongside the theoretical results, also strategies for an actual practical implementation of the stopping criteria are developed. Numerical experiments confirm the effectiveness of the proposed strategies.
In this work we make us of Livens principle (sometimes also referred to as Hamilton-Pontryagin principle) in order to obtain a novel structure-preserving integrator for mechanical systems. In contrast to the canonical Hamiltonian equations of motion, the Euler-Lagrange equations pertaining to Livens principle circumvent the need to invert the mass matrix. This is an essential advantage with respect to singular mass matrices, which can yield severe difficulties for the modelling and simulation of multibody systems. Moreover, Livens principle unifies both Lagrangian and Hamiltonian viewpoints on mechanics. Additionally, the present framework avoids the need to set up the system's Hamiltonian. The novel scheme algorithmically conserves a general energy function and aims at the preservation of momentum maps corresponding to symmetries of the system. We present an extension to mechanical systems subject to holonomic constraints. The performance of the newly devised method is studied in representative examples.
In this paper, we perform a roundoff error analysis of an integration-based method for computing the matrix sign function recently proposed by Nakaya and Tanaka. The method expresses the matrix sign function using an integral representation and computes the integral numerically by the double-exponential formula. While the method has large-grain parallelism and works well for well-conditioned matrices, its accuracy deteriorates when the input matrix is ill-conditioned or highly nonnormal. We investigate the reason for this phenomenon by a detailed roundoff error analysis.
In this paper, two novel classes of implicit exponential Runge-Kutta (ERK) methods are studied for solving highly oscillatory systems. First of all, we analyze the symplectic conditions of two kinds of exponential integrators, and present a first-order symplectic method. In order to solve highly oscillatory problems, the highly accurate implicit ERK integrators (up to order four) are formulated by comparing the Taylor expansions of numerical and exact solutions, it is shown that the order conditions of two new kinds of exponential methods are identical to the order conditions of classical Runge-Kutta (RK) methods. Moreover, we investigate the linear stability properties of these exponential methods. Finally, numerical results not only present the long time energy preservation of the first-order symplectic method, but also illustrate the accuracy and efficiency of these formulated methods in comparison with standard ERK methods.
In this work, we consider a class of dynamical systems described by ordinary differential equations under the assumption that the global asymptotic stability (GAS) of equilibrium points is established based on the Lyapunov stability theory with the help of quadratic Lyapunov functions. We employ the Micken's methodology to construct a family of explicit nonstandard finite difference (NSFD) methods preserving any given quadratic Lyapunov function $V$, i.e. they admit $V$ as a discrete Lyapunov function. Here, the proposed NSFD methods are derived from a novel non-local approximation for the zero vector function. Through rigorous mathematical analysis, we show that the constructed NSFD methods have the ability to preserve any given quadratic Lyapunov functions regardless of the values of the step size. As an important consequence, they are dynamically consistent with respect to the GAS of continuous-time dynamical systems. On the other hand, the positivity of the proposed NSFD methods is investigated. It is proved that they can also preserve the positivity of solutions of continuous-time dynamical systems. Finally, the theoretical findings are supported by a series of illustrative numerical experiments, in which advantages of the NSFD methods are demonstrated.
In this paper, we discuss the concept of quantum graphs with transparent vertices by considering the case where the graph interacts with an external time-independent field. In particular, we address the problem of transparent boundary conditions for quantum graphs, building on previous work on transparent boundary conditions for the stationary Schrodinger equation on a line. Physically relevant constraints making the vertex transparent under boundary conditions in the form of (weight) continuity and Kirchhoff rules are derived using two methods, the scattering approach and transparent boundary conditions for the time-independent Schrodinger equation. The latter is derived by extending the transparent boundary condition concept to the time-independent Schrodinger equation on driven quantum graphs. We also discuss how the eigenvalues and eigenfunctions of a quantum graph are influenced not only by its topology, but also by the shape(type) of a potential when an external field is involved.
In this paper, we consider the two-sample location shift model, a classic semiparametric model introduced by Stein (1956). This model is known for its adaptive nature, enabling nonparametric estimation with full parametric efficiency. Existing nonparametric estimators of the location shift often depend on external tuning parameters, which restricts their practical applicability (Van der Vaart and Wellner, 2021). We demonstrate that introducing an additional assumption of log-concavity on the underlying density can alleviate the need for tuning parameters. We propose a one step estimator for location shift estimation, utilizing log-concave density estimation techniques to facilitate tuning-free estimation of the efficient influence function. While we employ a truncated version of the one step estimator for theoretical adaptivity, our simulations indicate that the one step estimators perform best with zero truncation, eliminating the need for tuning during practical implementation.
Of all the possible projection methods for solving large-scale Lyapunov matrix equations, Galerkin approaches remain much more popular than Petrov-Galerkin ones. This is mainly due to the different nature of the projected problems stemming from these two families of methods. While a Galerkin approach leads to the solution of a low-dimensional matrix equation per iteration, a matrix least-squares problem needs to be solved per iteration in a Petrov-Galerkin setting. The significant computational cost of these least-squares problems has steered researchers towards Galerkin methods in spite of the appealing minimization properties of Petrov-Galerkin schemes. In this paper we introduce a framework that allows for modifying the Galerkin approach by low-rank, additive corrections to the projected matrix equation problem with the two-fold goal of attaining monotonic convergence rates similar to those of Petrov-Galerkin schemes while maintaining essentially the same computational cost of the original Galerkin method. We analyze the well-posedness of our framework and determine possible scenarios where we expect the residual norm attained by two low-rank-modified variants to behave similarly to the one computed by a Petrov-Galerkin technique. A panel of diverse numerical examples shows the behavior and potential of our new approach.