亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we consider the two-sample location shift model, a classic semiparametric model introduced by Stein (1956). This model is known for its adaptive nature, enabling nonparametric estimation with full parametric efficiency. Existing nonparametric estimators of the location shift often depend on external tuning parameters, which restricts their practical applicability (Van der Vaart and Wellner, 2021). We demonstrate that introducing an additional assumption of log-concavity on the underlying density can alleviate the need for tuning parameters. We propose a one step estimator for location shift estimation, utilizing log-concave density estimation techniques to facilitate tuning-free estimation of the efficient influence function. While we employ a truncated version of the one step estimator for theoretical adaptivity, our simulations indicate that the one step estimators perform best with zero truncation, eliminating the need for tuning during practical implementation.

相關內容

In this paper, we propose to consider various models of pattern recognition. At the same time, it is proposed to consider models in the form of two operators: a recognizing operator and a decision rule. Algebraic operations are introduced on recognizing operators, and based on the application of these operators, a family of recognizing algorithms is created. An upper estimate is constructed for the model, which guarantees the completeness of the extension.

Extensions of earlier algorithms and enhanced visualization techniques for approximating a correlation matrix are presented. The visualization problems that result from using column or colum--and--row adjusted correlation matrices, which give numerically a better fit, are addressed. For visualization of a correlation matrix a weighted alternating least squares algorithm is used, with either a single scalar adjustment, or a column-only adjustment with symmetric factorization; these choices form a compromise between the numerical accuracy of the approximation and the comprehensibility of the obtained correlation biplots. Some illustrative examples are discussed.

For appropriate Gaussian processes, as a corollary of the majorizing measure theorem, Michel Talagrand (1987) proved that the event that the supremum is significantly larger than its expectation can be covered by a set of half-spaces whose sum of measures is small. We prove a conjecture of Talagrand that is the analog of this result in the Bernoulli-$p$ setting, and answer a question of Talagrand on the analogous result for general positive empirical processes.

In this study, we consider a class of linear matroid interdiction problems, where the feasible sets for the upper-level decision-maker (referred to as the leader) and the lower-level decision-maker (referred to as the follower) are given by partition matroids with a common ground set. In contrast to classical network interdiction models where the leader is subject to a single budget constraint, in our setting, both the leader and the follower are subject to several independent cardinality constraints and engage in a zero-sum game. While a single-level linear integer programming problem over a partition matroid is known to be polynomially solvable, we prove that the considered bilevel problem is NP-hard, even when the objective function coefficients are all binary. On a positive note, it turns out that, if the number of cardinality constraints is fixed for either the leader or the follower, then the considered class of bilevel problems admits several polynomial-time solution schemes. Specifically, these schemes are based on a single-level dual reformulation, a dynamic programming-based approach, and a 2-flip local search algorithm for the leader.

We study the complexity (that is, the weight of the multiplication table) of the elliptic normal bases introduced by Couveignes and Lercier. We give an upper bound on the complexity of these elliptic normal bases, and we analyze the weight of some special vectors related to the multiplication table of those bases. This analysis leads us to some perspectives on the search for low complexity normal bases from elliptic periods.

Recently, a family of unconventional integrators for ODEs with polynomial vector fields was proposed, based on the polarization of vector fields. The simplest instance is the by now famous Kahan discretization for quadratic vector fields. All these integrators seem to possess remarkable conservation properties. In particular, it has been proved that, when the underlying ODE is Hamiltonian, its polarization discretization possesses an integral of motion and an invariant volume form. In this note, we propose a new algebraic approach to derivation of the integrals of motion for polarization discretizations.

In this paper we investigate the existence, uniqueness and approximation of solutions of delay differential equations (DDEs) with the right-hand side functions $f=f(t,x,z)$ that are Lipschitz continuous with respect to $x$ but only H\"older continuous with respect to $(t,z)$. We give a construction of the randomized two-stage Runge-Kutta scheme for DDEs and investigate its upper error bound in the $L^p(\Omega)$-norm for $p\in [2,+\infty)$. Finally, we report on results of numerical experiments.

In this paper, we formulate and analyse a geometric low-regularity integrator for solving the nonlinear Klein-Gordon equation in the $d$-dimensional space with $d=1,2,3$. The integrator is constructed based on the two-step trigonometric method and thus it has a simple form. Error estimates are rigorously presented to show that the integrator can achieve second-order time accuracy in the energy space under the regularity requirement in $H^{1+\frac{d}{4}}\times H^{\frac{d}{4}}$. Moreover, the time symmetry of the scheme ensures its good long-time energy conservation which is rigorously proved by the technique of modulated Fourier expansions. A numerical test is presented and the numerical results demonstrate the superiorities of the new integrator over some existing methods.

In this paper, we study the perturbation analysis of a class of composite optimization problems, which is a very convenient and unified framework for developing both theoretical and algorithmic issues of constrained optimization problems. The underlying theme of this paper is very important in both theoretical and computational study of optimization problems. Under some mild assumptions on the objective function, we provide a definition of a strong second order sufficient condition (SSOSC) for the composite optimization problem and also prove that the following conditions are equivalent to each other: the SSOSC and the nondegeneracy condition, the nonsingularity of Clarke's generalized Jacobian of the nonsmooth system at a Karush-Kuhn-Tucker (KKT) point, and the strong regularity of the KKT point. These results provide an important way to characterize the stability of the KKT point. As for the convex composite optimization problem, which is a special case of the general problem, we establish the equivalence between the primal/dual second order sufficient condition and the dual/primal strict Robinson constraint qualification, the equivalence between the primal/dual SSOSC and the dual/primal nondegeneracy condition. Moreover, we prove that the dual nondegeneracy condition and the nonsingularity of Clarke's generalized Jacobian of the subproblem corresponding to the augmented Lagrangian method are also equivalent to each other. These theoretical results lay solid foundation for designing an efficient algorithm.

In this paper, we consider a numerical method for the multi-term Caputo-Fabrizio time-fractional diffusion equations (with orders $\alpha_i\in(0,1)$, $i=1,2,\cdots,n$). The proposed method employs a fast finite difference scheme to approximate multi-term fractional derivatives in time, requiring only $O(1)$ storage and $O(N_T)$ computational complexity, where $N_T$ denotes the total number of time steps. Then we use a Legendre spectral collocation method for spatial discretization. The stability and convergence of the scheme have been thoroughly discussed and rigorously established. We demonstrate that the proposed scheme is unconditionally stable and convergent with an order of $O(\left(\Delta t\right)^{2}+N^{-m})$, where $\Delta t$, $N$, and $m$ represent the timestep size, polynomial degree, and regularity in the spatial variable of the exact solution, respectively. Numerical results are presented to validate the theoretical predictions.

北京阿比特科技有限公司