In this paper, we propose a reduced-dimensional smoothed particle hydrodynamics (SPH) formulation for quasi-static and dynamic analyses of plate and shell structures undergoing finite deformation and large rotation. By exploiting Uflyand-Mindlin plate theory, the present surface-particle formulation is able to resolve the thin structures by using only one layer of particles at the mid-surface. To resolve the geometric non-linearity and capture finite deformation and large rotation, two reduced-dimensional linear-reproducing correction matrices are introduced, and weighted non-singularity conversions between the rotation angle and pseudo normal are formulated. A new non-isotropic Kelvin-Voigt damping is proposed especially for the both thin and moderately thick plate and shell structures to increase the numerical stability. In addition, a shear-scaled momentum-conserving hourglass control algorithm with an adaptive limiter is introduced to suppress the mismatches between the particle position and pseudo normal and those estimated with the deformation gradient. A comprehensive set of test problems, for which the analytical or numerical results from literature or those of the volume-particle SPH model are available for quantitative and qualitative comparison, are examined to demonstrate the accuracy and stability of the present method.
We present a machine-learning strategy for finite element analysis of solid mechanics wherein we replace complex portions of a computational domain with a data-driven surrogate. In the proposed strategy, we decompose a computational domain into an "outer" coarse-scale domain that we resolve using a finite element method (FEM) and an "inner" fine-scale domain. We then develop a machine-learned (ML) model for the impact of the inner domain on the outer domain. In essence, for solid mechanics, our machine-learned surrogate performs static condensation of the inner domain degrees of freedom. This is achieved by learning the map from (virtual) displacements on the inner-outer domain interface boundary to forces contributed by the inner domain to the outer domain on the same interface boundary. We consider two such mappings, one that directly maps from displacements to forces without constraints, and one that maps from displacements to forces by virtue of learning a symmetric positive semi-definite (SPSD) stiffness matrix. We demonstrate, in a simplified setting, that learning an SPSD stiffness matrix results in a coarse-scale problem that is well-posed with a unique solution. We present numerical experiments on several exemplars, ranging from finite deformations of a cube to finite deformations with contact of a fastener-bushing geometry. We demonstrate that enforcing an SPSD stiffness matrix is critical for accurate FEM-ML coupled simulations, and that the resulting methods can accurately characterize out-of-sample loading configurations with significant speedups over the standard FEM simulations.
In this work, we introduce a new acquisition function for sequential sampling to efficiently quantify rare-event statistics of an input-to-response (ItR) system with given input probability and expensive function evaluations. Our acquisition is a generalization of the likelihood-weighted (LW) acquisition that was initially designed for the same purpose and then extended to many other applications. The improvement in our acquisition comes from the generalized form with two additional parameters, by varying which one can target and address two weaknesses of the original LW acquisition: (1) that the input space associated with rare-event responses is not sufficiently stressed in sampling; (2) that the surrogate model (generated from samples) may have significant deviation from the true ItR function, especially for cases with complex ItR function and limited number of samples. In addition, we develop a critical procedure in Monte-Carlo discrete optimization of the acquisition function, which achieves orders of magnitude acceleration compared to existing approaches for such type of problems. The superior performance of our new acquisition to the original LW acquisition is demonstrated in a number of test cases, including some cases that were designed to show the effectiveness of the original LW acquisition. We finally apply our method to an engineering example to quantify the rare-event roll-motion statistics of a ship in a random sea.
In this paper, we present a novel numerical scheme for simulating deformable and extensible capsules suspended in a Stokesian fluid. The main feature of our scheme is a partition-of-unity (POU) based representation of the surface that enables asymptotically faster computations compared to spherical-harmonics based representations. We use a boundary integral equation formulation to represent and discretize hydrodynamic interactions. The boundary integrals are weakly singular. We use the quadrature scheme based on the regularized Stokes kernels. We also use partition-of unity based finite differences that are required for the computational of interfacial forces. Given an N-point surface discretization, our numerical scheme has fourth-order accuracy and O(N) asymptotic complexity, which is an improvement over the O(N^2 log(N)) complexity of a spherical harmonics based spectral scheme that uses product-rule quadratures. We use GPU acceleration and demonstrate the ability of our code to simulate the complex shapes with high resolution. We study capsules that resist shear and tension and their dynamics in shear and Poiseuille flows. We demonstrate the convergence of the scheme and compare with the state of the art.
In this paper we propose a variant of enriched Galerkin methods for second order elliptic equations with over-penalization of interior jump terms. The bilinear form with interior over-penalization gives a non-standard norm which is different from the discrete energy norm in the classical discontinuous Galerkin methods. Nonetheless we prove that optimal a priori error estimates with the standard discrete energy norm can be obtained by combining a priori and a posteriori error analysis techniques. We also show that the interior over-penalization is advantageous for constructing preconditioners robust to mesh refinement by analyzing spectral equivalence of bilinear forms. Numerical results are included to illustrate the convergence and preconditioning results.
This paper introduces a mathematical framework for explicit structural dynamics, employing approximate dual functionals and rowsum mass lumping. We demonstrate that the approach may be interpreted as a Petrov-Galerkin method that utilizes rowsum mass lumping or as a Galerkin method with a customized higher-order accurate mass matrix. Unlike prior work, our method correctly incorporates Dirichlet boundary conditions while preserving higher order accuracy. The mathematical analysis is substantiated by spectral analysis and a two-dimensional linear benchmark that involves a non-linear geometric mapping. Our results reveal that our approach achieves accuracy and robustness comparable to a traditional Galerkin method employing the consistent mass formulation, while retaining the explicit nature of the lumped mass formulation.
Differential geometric approaches are ubiquitous in several fields of mathematics, physics and engineering, and their discretizations enable the development of network-based mathematical and computational frameworks, which are essential for large-scale data science. The Forman-Ricci curvature (FRC) - a statistical measure based on Riemannian geometry and designed for networks - is known for its high capacity for extracting geometric information from complex networks. However, extracting information from dense networks is still challenging due to the combinatorial explosion of high-order network structures. Motivated by this challenge we sought a set-theoretic representation theory for high-order network cells and FRC, as well as their associated concepts and properties, which together provide an alternative and efficient formulation for computing high-order FRC in complex networks. We provide a pseudo-code, a software implementation coined FastForman, as well as a benchmark comparison with alternative implementations. Crucially, our representation theory reveals previous computational bottlenecks and also accelerates the computation of FRC. As a consequence, our findings open new research possibilities in complex systems where higher-order geometric computations are required.
Rational function approximations provide a simple but flexible alternative to polynomial approximation, allowing one to capture complex non-linearities without oscillatory artifacts. However, there have been few attempts to use rational functions on noisy data due to the likelihood of creating spurious singularities. To avoid the creation of singularities, we use Bernstein polynomials and appropriate conditions on their coefficients to force the denominator to be strictly positive. While this reduces the range of rational polynomials that can be expressed, it keeps all the benefits of rational functions while maintaining the robustness of polynomial approximation in noisy data scenarios. Our numerical experiments on noisy data show that existing rational approximation methods continually produce spurious poles inside the approximation domain. This contrasts our method, which cannot create poles in the approximation domain and provides better fits than a polynomial approximation and even penalized splines on functions with multiple variables. Moreover, guaranteeing pole-free in an interval is critical for estimating non-constant coefficients when numerically solving differential equations using spectral methods. This provides a compact representation of the original differential equation, allowing numeric solvers to achieve high accuracy quickly, as seen in our experiments.
A new mechanical model on noncircular shallow tunnelling considering initial stress field is proposed in this paper by constraining far-field ground surface to eliminate displacement singularity at infinity, and the originally unbalanced tunnel excavation problem in existing solutions is turned to an equilibrium one of mixed boundaries. By applying analytic continuation, the mixed boundaries are transformed to a homogenerous Riemann-Hilbert problem, which is subsequently solved via an efficient and accurate iterative method with boundary conditions of static equilibrium, displacement single-valuedness, and traction along tunnel periphery. The Lanczos filtering technique is used in the final stress and displacement solution to reduce the Gibbs phenomena caused by the constrained far-field ground surface for more accurte results. Several numerical cases are conducted to intensively verify the proposed solution by examining boundary conditions and comparing with existing solutions, and all the results are in good agreements. Then more numerical cases are conducted to investigate the stress and deformation distribution along ground surface and tunnel periphery, and several engineering advices are given. Further discussions on the defects of the proposed solution are also conducted for objectivity.
In this paper we introduce a multilevel Picard approximation algorithm for general semilinear parabolic PDEs with gradient-dependent nonlinearities whose coefficient functions do not need to be constant. We also provide a full convergence and complexity analysis of our algorithm. To obtain our main results, we consider a particular stochastic fixed-point equation (SFPE) motivated by the Feynman-Kac representation and the Bismut-Elworthy-Li formula. We show that the PDE under consideration has a unique viscosity solution which coincides with the first component of the unique solution of the stochastic fixed-point equation. Moreover, if the PDE admits a strong solution, then the gradient of the unique solution of the PDE coincides with the second component of the unique solution of the stochastic fixed-point equation.
In this paper, we propose a low rank approximation method for efficiently solving stochastic partial differential equations. Specifically, our method utilizes a novel low rank approximation of the stiffness matrices, which can significantly reduce the computational load and storage requirements associated with matrix inversion without losing accuracy. To demonstrate the versatility and applicability of our method, we apply it to address two crucial uncertainty quantification problems: stochastic elliptic equations and optimal control problems governed by stochastic elliptic PDE constraints. Based on varying dimension reduction ratios, our algorithm exhibits the capability to yield a high precision numerical solution for stochastic partial differential equations, or provides a rough representation of the exact solutions as a pre-processing phase. Meanwhile, our algorithm for solving stochastic optimal control problems allows a diverse range of gradient-based unconstrained optimization methods, rendering it particularly appealing for computationally intensive large-scale problems. Numerical experiments are conducted and the results provide strong validation of the feasibility and effectiveness of our algorithm.