亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We propose a Bernoulli-barycentric rational matrix collocation method for two-dimensional evolutionary partial differential equations (PDEs) with variable coefficients that combines Bernoulli polynomials with barycentric rational interpolations in time and space, respectively. The theoretical accuracy $O\left((2\pi)^{-N}+h_x^{d_x-1}+h_y^{d_y-1}\right)$ of our numerical scheme is proven, where $N$ is the number of basis functions in time, $h_x$ and $h_y$ are the grid sizes in the $x$, $y$-directions, respectively, and $0\leq d_x\leq \frac{b-a}{h_x},~0\leq d_y\leq\frac{d-c}{h_y}$. For the efficient solution of the relevant linear system arising from the discretizations, we introduce a class of dimension expanded preconditioners that take the advantage of structural properties of the coefficient matrices, and we present a theoretical analysis of eigenvalue distributions of the preconditioned matrices. The effectiveness of our proposed method and preconditioners are studied for solving some real-world examples represented by the heat conduction equation, the advection-diffusion equation, the wave equation and telegraph equations.

相關內容

For the Euler scheme of the stochastic linear evolution equations, discrete stochastic maximal $ L^p $-regularity estimate is established, and a sharp error estimate in the norm $ \|\cdot\|_{L^p((0,T)\times\Omega;L^q(\mathcal O))} $, $ p,q \in [2,\infty) $, is derived via a duality argument.

Parameters of differential equations are essential to characterize intrinsic behaviors of dynamic systems. Numerous methods for estimating parameters in dynamic systems are computationally and/or statistically inadequate, especially for complex systems with general-order differential operators, such as motion dynamics. This article presents Green's matching, a computationally tractable and statistically efficient two-step method, which only needs to approximate trajectories in dynamic systems but not their derivatives due to the inverse of differential operators by Green's function. This yields a statistically optimal guarantee for parameter estimation in general-order equations, a feature not shared by existing methods, and provides an efficient framework for broad statistical inferences in complex dynamic systems.

We formulate a uniform tail bound for empirical processes indexed by a class of functions, in terms of the individual deviations of the functions rather than the worst-case deviation in the considered class. The tail bound is established by introducing an initial "deflation" step to the standard generic chaining argument. The resulting tail bound is the sum of the complexity of the "deflated function class" in terms of a generalization of Talagrand's $\gamma$ functional, and the deviation of the function instance, both of which are formulated based on the natural seminorm induced by the corresponding Cram\'{e}r functions. We also provide certain approximations for the mentioned seminorm when the function class lies in a given (exponential type) Orlicz space, that can be used to make the complexity term and the deviation term more explicit.

The latency location routing problem integrates the facility location problem and the multi-depot cumulative capacitated vehicle routing problem. This problem involves making simultaneous decisions about depot locations and vehicle routes to serve customers while aiming to minimize the sum of waiting (arriving) times for all customers. To address this computationally challenging problem, we propose a reinforcement learning guided hybrid evolutionary algorithm following the framework of the memetic algorithm. The proposed algorithm relies on a diversity-enhanced multi-parent edge assembly crossover to build promising offspring and a reinforcement learning guided variable neighborhood descent to determine the exploration order of multiple neighborhoods. Additionally, strategic oscillation is used to achieve a balanced exploration of both feasible and infeasible solutions. The competitiveness of the algorithm against state-of-the-art methods is demonstrated by experimental results on the three sets of 76 popular instances, including 51 improved best solutions (new upper bounds) for the 59 instances with unknown optima and equal best results for the remaining instances. We also conduct additional experiments to shed light on the key components of the algorithm.

The numerical treatment of fluid-particle systems is a very challenging problem because of the complex coupling phenomena occurring between the two phases. Although accurate mathematical modelling is available to address this kind of application, the computational cost of the numerical simulations is very expensive. The use of the most modern high-performance computing infrastructures could help to mitigate such an issue but not completely fix it. In this work, we develop a non-intrusive data-driven reduced order model (ROM) for Computational Fluid Dynamics (CFD) - Discrete Element Method (DEM) simulations. The ROM is built using the proper orthogonal decomposition (POD) for the computation of the reduced basis space and the Long Short-Term Memory (LSTM) network for the computation of the reduced coefficients. We are interested in dealing both with system identification and prediction. The most relevant novelties rely on (i) a filtering procedure of the full-order snapshots to reduce the dimensionality of the reduced problem and (ii) a preliminary treatment of the particle phase. The accuracy of our ROM approach is assessed against the classic Goldschmidt fluidized bed benchmark problem. Finally, we also provide some insights about the efficiency of our ROM approach.

We develop a new coarse-scale approximation strategy for the nonlinear single-continuum Richards equation as an unsaturated flow over heterogeneous non-periodic media, using the online generalized multiscale finite element method (online GMsFEM) together with deep learning. A novelty of this approach is that local online multiscale basis functions are computed rapidly and frequently by utilizing deep neural networks (DNNs). More precisely, we employ the training set of stochastic permeability realizations and the computed relating online multiscale basis functions to train neural networks. The nonlinear map between such permeability fields and online multiscale basis functions is developed by our proposed deep learning algorithm. That is, in a new way, the predicted online multiscale basis functions incorporate the nonlinearity treatment of the Richards equation and refect any time-dependent changes in the problem's properties. Multiple numerical experiments in two-dimensional model problems show the good performance of this technique, in terms of predictions of the online multiscale basis functions and thus finding solutions.

We study the equational theory of the Weihrauch lattice with multiplication, meaning the collection of equations between terms built from variables, the lattice operations $\sqcup$, $\sqcap$, the product $\times$, and the finite parallelization $(-)^*$ which are true however we substitute Weihrauch degrees for the variables. We provide a combinatorial description of these in terms of a reducibility between finite graphs, and moreover, show that deciding which equations are true in this sense is complete for the third level of the polynomial hierarchy.

The subject of this work is an adaptive stochastic Galerkin finite element method for parametric or random elliptic partial differential equations, which generates sparse product polynomial expansions with respect to the parametric variables of solutions. For the corresponding spatial approximations, an independently refined finite element mesh is used for each polynomial coefficient. The method relies on multilevel expansions of input random fields and achieves error reduction with uniform rate. In particular, the saturation property for the refinement process is ensured by the algorithm. The results are illustrated by numerical experiments, including cases with random fields of low regularity.

We present a finite element approach for diffusion problems with thermal fluctuations based on a fluctuating hydrodynamics model. The governing transport equations are stochastic partial differential equations with a fluctuating forcing term. We propose a discrete formulation of the stochastic forcing term that has the correct covariance matrix up to a standard discretization error. Furthermore, to obtain a numerical solution with spatial correlations that converge to those of the continuum equation, we derive a linear mapping to transform the finite element solution into an equivalent discrete solution that is free from the artificial correlations introduced by the spatial discretization. The method is validated by applying it to two diffusion problems: a second-order diffusion equation and a fourth-order diffusion equation. The theoretical (continuum) solution to the first case presents spatially decorrelated fluctuations, while the second case presents fluctuations correlated over a finite length. In both cases, the numerical solution presents a structure factor that approximates well the continuum one.

Incomplete factorizations have long been popular general-purpose algebraic preconditioners for solving large sparse linear systems of equations. Guaranteeing the factorization is breakdown free while computing a high quality preconditioner is challenging. A resurgence of interest in using low precision arithmetic makes the search for robustness more urgent and tougher. In this paper, we focus on symmetric positive definite problems and explore a number of approaches: a look-ahead strategy to anticipate break down as early as possible, the use of global shifts, and a modification of an idea developed in the field of numerical optimization for the complete Cholesky factorization of dense matrices. Our numerical simulations target highly ill-conditioned sparse linear systems with the goal of computing the factors in half precision arithmetic and then achieving double precision accuracy using mixed precision refinement.

北京阿比特科技有限公司