亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper introduces CARSS (Cooperative Attention-guided Reinforcement Subpath Synthesis), a novel approach to address the Traveling Salesman Problem (TSP) by leveraging cooperative Multi-Agent Reinforcement Learning (MARL). CARSS decomposes the TSP solving process into two distinct yet synergistic steps: "subpath generation" and "subpath merging." In the former, a cooperative MARL framework is employed to iteratively generate subpaths using multiple agents. In the latter, these subpaths are progressively merged to form a complete cycle. The algorithm's primary objective is to enhance efficiency in terms of training memory consumption, testing time, and scalability, through the adoption of a multi-agent divide and conquer paradigm. Notably, attention mechanisms play a pivotal role in feature embedding and parameterization strategies within CARSS. The training of the model is facilitated by the independent REINFORCE algorithm. Empirical experiments reveal CARSS's superiority compared to single-agent alternatives: it demonstrates reduced GPU memory utilization, accommodates training graphs nearly 2.5 times larger, and exhibits the potential for scaling to even more extensive problem sizes. Furthermore, CARSS substantially reduces testing time and optimization gaps by approximately 50% for TSP instances of up to 1000 vertices, when compared to standard decoding methods.

相關內容

In this paper, we introduce an authorship attribution method called Authorial Language Models (ALMs) that involves identifying the most likely author of a questioned document based on the perplexity of the questioned document calculated for a set of causal language models fine-tuned on the writings of a set of candidate author. We benchmarked ALMs against state-of-art-systems using the CCAT50 dataset and the Blogs50 datasets. We find that ALMs achieves a macro-average accuracy score of 83.6% on Blogs50, outperforming all other methods, and 74.9% on CCAT50, matching the performance of the best method. To assess the performance of ALMs on shorter texts, we also conducted text ablation testing. We found that to reach a macro-average accuracy of 70%, ALMs needs 40 tokens on Blogs50 and 400 tokens on CCAT50, while to reach 60% ALMs requires 20 tokens on Blogs50 and 70 tokens on CCAT50.

Despite advancements in evaluating Large Language Models (LLMs) for code synthesis, benchmarks have predominantly focused on functional correctness, overlooking the importance of code efficiency. We present Mercury, the first benchmark designated for assessing the code efficiency of LLM code synthesis tasks. Mercury consists of 1,889 programming tasks covering diverse difficulty levels alongside test case generators generating unlimited cases for comprehensive evaluation. Unlike existing benchmarks, Mercury integrates a novel metric Beyond@K to measure normalized code efficiency based on historical submissions, leading to a new evaluation indicator for code synthesis, which encourages generating functionally correct and computationally efficient code, mirroring the real-world software development standard. Our findings reveal that while LLMs demonstrate the remarkable capability to generate functionally correct code, there still exists a substantial gap in their efficiency output, underscoring a new frontier for LLM research and development.

This paper presents VisLingInstruct, a novel approach to advancing Multi-Modal Language Models (MMLMs) in zero-shot learning. Current MMLMs show impressive zero-shot abilities in multi-modal tasks, but their performance depends heavily on the quality of instructions. VisLingInstruct tackles this by autonomously evaluating and optimizing instructional texts through In-Context Learning, improving the synergy between visual perception and linguistic expression in MMLMs. Alongside this instructional advancement, we have also optimized the visual feature extraction modules in MMLMs, further augmenting their responsiveness to textual cues. Our comprehensive experiments on MMLMs, based on FlanT5 and Vicuna, show that VisLingInstruct significantly improves zero-shot performance in visual multi-modal tasks. Notably, it achieves a 13.1% and 9% increase in accuracy over the prior state-of-the-art on the TextVQA and HatefulMemes datasets.

Lexical Substitution discovers appropriate substitutes for a given target word in a context sentence. However, the task fails to consider substitutes that are of equal or higher proficiency than the target, an aspect that could be beneficial for language learners looking to improve their writing. To bridge this gap, we propose a new task, language proficiency-oriented lexical substitution. We also introduce ProLex, a novel benchmark designed to assess systems' ability to generate not only appropriate substitutes but also substitutes that demonstrate better language proficiency. Besides the benchmark, we propose models that can automatically perform the new task. We show that our best model, a Llama2-13B model fine-tuned with task-specific synthetic data, outperforms ChatGPT by an average of 3.2% in F-score and achieves comparable results with GPT-4 on ProLex.

This paper introduces the Quantified Boolean Bayesian Network (QBBN), which provides a unified view of logical and probabilistic reasoning. The QBBN is meant to address a central problem with the Large Language Model (LLM), which has become extremely popular in Information Retrieval, which is that the LLM hallucinates. A Bayesian Network, by construction, cannot hallucinate, because it can only return answers that it can explain. We show how a Bayesian Network over an unbounded number of boolean variables can be configured to represent the logical reasoning underlying human language. We do this by creating a key-value version of the First-Order Calculus, for which we can prove consistency and completeness. We show that the model is trivially trained over fully observed data, but that inference is non-trivial. Exact inference in a Bayesian Network is intractable (i.e. $\Omega(2^N)$ for $N$ variables). For inference, we investigate the use of Loopy Belief Propagation (LBP), which is not guaranteed to converge, but which has been shown to often converge in practice. Our experiments show that LBP indeed does converge very reliably, and our analysis shows that a round of LBP takes time $O(N2^n)$, where $N$ bounds the number of variables considered, and $n$ bounds the number of incoming connections to any factor, and further improvements may be possible. Our network is specifically designed to alternate between AND and OR gates in a Boolean Algebra, which connects more closely to logical reasoning, allowing a completeness proof for an expanded version of our network, and also allows inference to follow specific but adequate pathways, that turn out to be fast.

This paper introduces a novel approach, Decision Theory-guided Deep Reinforcement Learning (DT-guided DRL), to address the inherent cold start problem in DRL. By integrating decision theory principles, DT-guided DRL enhances agents' initial performance and robustness in complex environments, enabling more efficient and reliable convergence during learning. Our investigation encompasses two primary problem contexts: the cart pole and maze navigation challenges. Experimental results demonstrate that the integration of decision theory not only facilitates effective initial guidance for DRL agents but also promotes a more structured and informed exploration strategy, particularly in environments characterized by large and intricate state spaces. The results of experiment demonstrate that DT-guided DRL can provide significantly higher rewards compared to regular DRL. Specifically, during the initial phase of training, the DT-guided DRL yields up to an 184% increase in accumulated reward. Moreover, even after reaching convergence, it maintains a superior performance, ending with up to 53% more reward than standard DRL in large maze problems. DT-guided DRL represents an advancement in mitigating a fundamental challenge of DRL by leveraging functions informed by human (designer) knowledge, setting a foundation for further research in this promising interdisciplinary domain.

This paper proposes a novel variant of GFlowNet, genetic-guided GFlowNet (Genetic GFN), which integrates an iterative genetic search into GFlowNet. Genetic search effectively guides the GFlowNet to high-rewarded regions, addressing global over-exploration that results in training inefficiency and exploring limited regions. In addition, training strategies, such as rank-based replay training and unsupervised maximum likelihood pre-training, are further introduced to improve the sample efficiency of Genetic GFN. The proposed method shows a state-of-the-art score of 16.213, significantly outperforming the reported best score in the benchmark of 15.185, in practical molecular optimization (PMO), which is an official benchmark for sample-efficient molecular optimization. Remarkably, ours exceeds all baselines, including reinforcement learning, Bayesian optimization, generative models, GFlowNets, and genetic algorithms, in 14 out of 23 tasks.

Deep learning has become the dominant approach in coping with various tasks in Natural LanguageProcessing (NLP). Although text inputs are typically represented as a sequence of tokens, there isa rich variety of NLP problems that can be best expressed with a graph structure. As a result, thereis a surge of interests in developing new deep learning techniques on graphs for a large numberof NLP tasks. In this survey, we present a comprehensive overview onGraph Neural Networks(GNNs) for Natural Language Processing. We propose a new taxonomy of GNNs for NLP, whichsystematically organizes existing research of GNNs for NLP along three axes: graph construction,graph representation learning, and graph based encoder-decoder models. We further introducea large number of NLP applications that are exploiting the power of GNNs and summarize thecorresponding benchmark datasets, evaluation metrics, and open-source codes. Finally, we discussvarious outstanding challenges for making the full use of GNNs for NLP as well as future researchdirections. To the best of our knowledge, this is the first comprehensive overview of Graph NeuralNetworks for Natural Language Processing.

In this paper, we propose a novel Feature Decomposition and Reconstruction Learning (FDRL) method for effective facial expression recognition. We view the expression information as the combination of the shared information (expression similarities) across different expressions and the unique information (expression-specific variations) for each expression. More specifically, FDRL mainly consists of two crucial networks: a Feature Decomposition Network (FDN) and a Feature Reconstruction Network (FRN). In particular, FDN first decomposes the basic features extracted from a backbone network into a set of facial action-aware latent features to model expression similarities. Then, FRN captures the intra-feature and inter-feature relationships for latent features to characterize expression-specific variations, and reconstructs the expression feature. To this end, two modules including an intra-feature relation modeling module and an inter-feature relation modeling module are developed in FRN. Experimental results on both the in-the-lab databases (including CK+, MMI, and Oulu-CASIA) and the in-the-wild databases (including RAF-DB and SFEW) show that the proposed FDRL method consistently achieves higher recognition accuracy than several state-of-the-art methods. This clearly highlights the benefit of feature decomposition and reconstruction for classifying expressions.

We study the problem of learning to reason in large scale knowledge graphs (KGs). More specifically, we describe a novel reinforcement learning framework for learning multi-hop relational paths: we use a policy-based agent with continuous states based on knowledge graph embeddings, which reasons in a KG vector space by sampling the most promising relation to extend its path. In contrast to prior work, our approach includes a reward function that takes the accuracy, diversity, and efficiency into consideration. Experimentally, we show that our proposed method outperforms a path-ranking based algorithm and knowledge graph embedding methods on Freebase and Never-Ending Language Learning datasets.

北京阿比特科技有限公司