亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Advances in 3D printing of biocompatible materials make patient-specific implants increasingly popular. The design of these implants is, however, still a tedious and largely manual process. Existing approaches to automate implant generation are mainly based on 3D U-Net architectures on downsampled or patch-wise data, which can result in a loss of detail or contextual information. Following the recent success of Diffusion Probabilistic Models, we propose a novel approach for implant generation based on a combination of 3D point cloud diffusion models and voxelization networks. Due to the stochastic sampling process in our diffusion model, we can propose an ensemble of different implants per defect, from which the physicians can choose the most suitable one. We evaluate our method on the SkullBreak and SkullFix datasets, generating high-quality implants and achieving competitive evaluation scores.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · 模型評估 · state-of-the-art · Performer · Boosting(一種模型訓練加速方式) ·
2023 年 8 月 31 日

Raga is a fundamental melodic concept in Indian Art Music (IAM). It is characterized by complex patterns. All performances and compositions are based on the raga framework. Raga and tonic detection have been a long-standing research problem in the field of Music Information Retrieval. In this paper, we attempt to detect the raga using a novel feature to extract sequential or temporal information from an audio sample. We call these Sequential Pitch Distributions (SPD), which are distributions taken over pitch values between two given pitch values over time. We also achieve state-of-the-art results on both Hindustani and Carnatic music raga data sets with an accuracy of 99% and 88.13%, respectively. SPD gives a great boost in accuracy over a standard pitch distribution. The main goal of this paper, however, is to present an alternative approach to modeling the temporal aspects of the melody and thereby deducing the raga.

Rigid robots can be precise in repetitive tasks, but struggle in unstructured environments. Nature's versatility in such environments inspires researchers to develop biomimetic robots that incorporate compliant and contracting artificial muscles. Among the recently proposed artificial muscle technologies, electrohydraulic actuators are promising since they offer performance comparable to that of mammalian muscles in terms of speed and power density. However, they require high driving voltages and have safety concerns due to exposed electrodes. These high voltages lead to either bulky or inefficient driving electronics that make untethered, high-degree-of-freedom bio-inspired robots difficult to realize. Here, we present hydraulically amplified low voltage electrostatic (HALVE) actuators that match mammalian skeletal muscles in average power density (50.5 W kg-1) and peak strain rate (971 % s-1) at a driving voltage of just 1100 V. This driving voltage is approx. 5-7 times lower compared to other electrohydraulic actuators using paraelectric dielectrics. Furthermore, HALVE actuators are safe to touch, waterproof, and self-clearing, which makes them easy to implement in wearables and robotics. We characterize, model, and physically validate key performance metrics of the actuator and compare its performance to state-of-the-art electrohydraulic designs. Finally, we demonstrate the utility of our actuators on two muscle-based electrohydraulic robots: an untethered soft robotic swimmer and a robotic gripper. We foresee that HALVE actuators can become a key building block for future highly-biomimetic untethered robots and wearables with many independent artificial muscles such as biomimetic hands, faces, or exoskeletons.

Homomorphic encryption (HE) enables calculating on encrypted data, which makes it possible to perform privacypreserving neural network inference. One disadvantage of this technique is that it is several orders of magnitudes slower than calculation on unencrypted data. Neural networks are commonly trained using floating-point, while most homomorphic encryption libraries calculate on integers, thus requiring a quantisation of the neural network. A straightforward approach would be to quantise to large integer sizes (e.g. 32 bit) to avoid large quantisation errors. In this work, we reduce the integer sizes of the networks, using quantisation-aware training, to allow more efficient computations. For the targeted MNIST architecture proposed by Badawi et al., we reduce the integer sizes by 33% without significant loss of accuracy, while for the CIFAR architecture, we can reduce the integer sizes by 43%. Implementing the resulting networks under the BFV homomorphic encryption scheme using SEAL, we could reduce the execution time of an MNIST neural network by 80% and by 40% for a CIFAR neural network.

We introduce a novel approach for image edge detection based on pseudo-Boolean polynomials for image patches. We show that patches covering edge regions in the image result in pseudo-Boolean polynomials with higher degrees compared to patches that cover blob regions. The proposed approach is based on reduction of polynomial degree and equivalence properties of penalty-based pseudo-Boolean polynomials.

In a recent work, Esmer et al. describe a simple method - Approximate Monotone Local Search - to obtain exponential approximation algorithms from existing parameterized exact algorithms, polynomial-time approximation algorithms and, more generally, parameterized approximation algorithms. In this work, we generalize those results to the weighted setting. More formally, we consider monotone subset minimization problems over a weighted universe of size $n$ (e.g., Vertex Cover, $d$-Hitting Set and Feedback Vertex Set). We consider a model where the algorithm is only given access to a subroutine that finds a solution of weight at most $\alpha \cdot W$ (and of arbitrary cardinality) in time $c^k \cdot n^{O(1)}$ where $W$ is the minimum weight of a solution of cardinality at most $k$. In the unweighted setting, Esmer et al. determine the smallest value $d$ for which a $\beta$-approximation algorithm running in time $d^n \cdot n^{O(1)}$ can be obtained in this model. We show that the same dependencies also hold in a weighted setting in this model: for every fixed $\varepsilon>0$ we obtain a $\beta$-approximation algorithm running in time $O\left((d+\varepsilon)^{n}\right)$, for the same $d$ as in the unweighted setting. Similarly, we also extend a $\beta$-approximate brute-force search (in a model which only provides access to a membership oracle) to the weighted setting. Using existing approximation algorithms and exact parameterized algorithms for weighted problems, we obtain the first exponential-time $\beta$-approximation algorithms that are better than brute force for a variety of problems including Weighted Vertex Cover, Weighted $d$-Hitting Set, Weighted Feedback Vertex Set and Weighted Multicut.

Code models, such as CodeBERT and CodeT5, offer general-purpose representations of code and play a vital role in supporting downstream automated software engineering tasks. Most recently, code models were revealed to be vulnerable to backdoor attacks. A code model that is backdoor-attacked can behave normally on clean examples but will produce pre-defined malicious outputs on examples injected with triggers that activate the backdoors. Existing backdoor attacks on code models use unstealthy and easy-to-detect triggers. This paper aims to investigate the vulnerability of code models with stealthy backdoor attacks. To this end, we propose AFRAIDOOR (Adversarial Feature as Adaptive Backdoor). AFRAIDOOR achieves stealthiness by leveraging adversarial perturbations to inject adaptive triggers into different inputs. We evaluate AFRAIDOOR on three widely adopted code models (CodeBERT, PLBART and CodeT5) and two downstream tasks (code summarization and method name prediction). We find that around 85% of adaptive triggers in AFRAIDOOR bypass the detection in the defense process. By contrast, only less than 12% of the triggers from previous work bypass the defense. When the defense method is not applied, both AFRAIDOOR and baselines have almost perfect attack success rates. However, once a defense is applied, the success rates of baselines decrease dramatically to 10.47% and 12.06%, while the success rate of AFRAIDOOR are 77.05% and 92.98% on the two tasks. Our finding exposes security weaknesses in code models under stealthy backdoor attacks and shows that the state-of-the-art defense method cannot provide sufficient protection. We call for more research efforts in understanding security threats to code models and developing more effective countermeasures.

2D-based Industrial Anomaly Detection has been widely discussed, however, multimodal industrial anomaly detection based on 3D point clouds and RGB images still has many untouched fields. Existing multimodal industrial anomaly detection methods directly concatenate the multimodal features, which leads to a strong disturbance between features and harms the detection performance. In this paper, we propose Multi-3D-Memory (M3DM), a novel multimodal anomaly detection method with hybrid fusion scheme: firstly, we design an unsupervised feature fusion with patch-wise contrastive learning to encourage the interaction of different modal features; secondly, we use a decision layer fusion with multiple memory banks to avoid loss of information and additional novelty classifiers to make the final decision. We further propose a point feature alignment operation to better align the point cloud and RGB features. Extensive experiments show that our multimodal industrial anomaly detection model outperforms the state-of-the-art (SOTA) methods on both detection and segmentation precision on MVTec-3D AD dataset. Code is available at //github.com/nomewang/M3DM.

Recent contrastive representation learning methods rely on estimating mutual information (MI) between multiple views of an underlying context. E.g., we can derive multiple views of a given image by applying data augmentation, or we can split a sequence into views comprising the past and future of some step in the sequence. Contrastive lower bounds on MI are easy to optimize, but have a strong underestimation bias when estimating large amounts of MI. We propose decomposing the full MI estimation problem into a sum of smaller estimation problems by splitting one of the views into progressively more informed subviews and by applying the chain rule on MI between the decomposed views. This expression contains a sum of unconditional and conditional MI terms, each measuring modest chunks of the total MI, which facilitates approximation via contrastive bounds. To maximize the sum, we formulate a contrastive lower bound on the conditional MI which can be approximated efficiently. We refer to our general approach as Decomposed Estimation of Mutual Information (DEMI). We show that DEMI can capture a larger amount of MI than standard non-decomposed contrastive bounds in a synthetic setting, and learns better representations in a vision domain and for dialogue generation.

Relation prediction for knowledge graphs aims at predicting missing relationships between entities. Despite the importance of inductive relation prediction, most previous works are limited to a transductive setting and cannot process previously unseen entities. The recent proposed subgraph-based relation reasoning models provided alternatives to predict links from the subgraph structure surrounding a candidate triplet inductively. However, we observe that these methods often neglect the directed nature of the extracted subgraph and weaken the role of relation information in the subgraph modeling. As a result, they fail to effectively handle the asymmetric/anti-symmetric triplets and produce insufficient embeddings for the target triplets. To this end, we introduce a \textbf{C}\textbf{o}mmunicative \textbf{M}essage \textbf{P}assing neural network for \textbf{I}nductive re\textbf{L}ation r\textbf{E}asoning, \textbf{CoMPILE}, that reasons over local directed subgraph structures and has a vigorous inductive bias to process entity-independent semantic relations. In contrast to existing models, CoMPILE strengthens the message interactions between edges and entitles through a communicative kernel and enables a sufficient flow of relation information. Moreover, we demonstrate that CoMPILE can naturally handle asymmetric/anti-symmetric relations without the need for explosively increasing the number of model parameters by extracting the directed enclosing subgraphs. Extensive experiments show substantial performance gains in comparison to state-of-the-art methods on commonly used benchmark datasets with variant inductive settings.

Recent advances in maximizing mutual information (MI) between the source and target have demonstrated its effectiveness in text generation. However, previous works paid little attention to modeling the backward network of MI (i.e., dependency from the target to the source), which is crucial to the tightness of the variational information maximization lower bound. In this paper, we propose Adversarial Mutual Information (AMI): a text generation framework which is formed as a novel saddle point (min-max) optimization aiming to identify joint interactions between the source and target. Within this framework, the forward and backward networks are able to iteratively promote or demote each other's generated instances by comparing the real and synthetic data distributions. We also develop a latent noise sampling strategy that leverages random variations at the high-level semantic space to enhance the long term dependency in the generation process. Extensive experiments based on different text generation tasks demonstrate that the proposed AMI framework can significantly outperform several strong baselines, and we also show that AMI has potential to lead to a tighter lower bound of maximum mutual information for the variational information maximization problem.

北京阿比特科技有限公司