亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Big data, with NxP dimension where N is extremely large, has created new challenges for data analysis, particularly in the realm of creating meaningful clusters of data. Clustering techniques, such as K-means or hierarchical clustering are popular methods for performing exploratory analysis on large datasets. Unfortunately, these methods are not always possible to apply to big data due to memory or time constraints generated by calculations of order PxN(N-1). To circumvent this problem, typically, the clustering technique is applied to a random sample drawn from the dataset: however, a weakness is that the structure of the dataset, particularly at the edges, is not necessarily maintained. We propose a new solution through the concept of "data nuggets", which reduce a large dataset into a small collection of nuggets of data, each containing a center, weight, and scale parameter. The data nuggets are then input into algorithms that compute methods such as principal components analysis and clustering in a more computationally efficient manner. We show the consistency of the data nuggets-based covariance estimator and apply the methodology of data nuggets to perform exploratory analysis of a flow cytometry dataset containing over one million observations using PCA and K-means clustering for weighted observations. Supplementary materials for this article are available online.

相關內容

Quantum computing is a highly abstract scientific discipline, which, however, is expected to have great practical relevance in future information technology. This forces educators to seek new methods to teach quantum computing for students with diverse backgrounds and with no prior knowledge of quantum physics. We have developed an online course built around an interactive quantum circuit simulator designed to enable easy creation and maintenance of course material with ranging difficulty. The immediate feedback and automatically evaluated tasks lowers the entry barrier to quantum computing for all students, regardless of their background.

As an emerging computing paradigm, edge computing offers computing resources closer to the data sources, helping to improve the service quality of many real-time applications. A crucial problem is designing a rational pricing mechanism to maximize the revenue of the edge computing service provider (ECSP). However, prior works have considerable limitations: clients are static and are required to disclose their preferences, which is impractical in reality. However, previous works assume user privacy information to be known or consider the number of users in edge scenarios to be static. To address this issue, we propose a novel sequential computation offloading mechanism, where the ECSP posts prices of computing resources with different configurations to clients in turn. Clients independently choose which computing resources to purchase and how to offload based on their prices. Then Egret, a deep reinforcement learning-based approach that achieves maximum revenue, is proposed. Egret determines the optimal price and visiting orders online without considering clients' preferences. Experimental results show that the revenue of ECSP in Egret is only 1.29\% lower than Oracle and 23.43\% better than the state-of-the-art when the client arrives dynamically.

Streaming data clustering is a popular research topic in the fields of data mining and machine learning. Compared to static data, streaming data, which is usually analyzed in data chunks, is more susceptible to encountering the dynamic cluster imbalanced issue. That is, the imbalanced degree of clusters varies in different streaming data chunks, leading to corruption in either the accuracy or the efficiency of streaming data analysis based on existing clustering methods. Therefore, we propose an efficient approach called Learning Self-Refined Organizing Map (LSROM) to handle the imbalanced streaming data clustering problem, where we propose an advanced SOM for representing the global data distribution. The constructed SOM is first refined for guiding the partition of the dataset to form many micro-clusters to avoid the missing small clusters in imbalanced data. Then an efficient merging of the micro-clusters is conducted through quick retrieval based on the SOM, which can automatically yield a true number of imbalanced clusters. In comparison to existing imbalanced data clustering approaches, LSROM is with a lower time complexity $O(n\log n)$, while achieving very competitive clustering accuracy. Moreover, LSROM is interpretable and insensitive to hyper-parameters. Extensive experiments have verified its efficacy.

Recent advancements in large language models (LLMs) such as ChatGPT and LLaMA have hinted at their potential to revolutionize medical applications, yet their application in clinical settings often reveals limitations due to a lack of specialized training on medical-specific data. In response to this challenge, this study introduces Me-LLaMA, a novel medical LLM family that includes foundation models - Me-LLaMA 13/70B, along with their chat-enhanced versions - Me-LLaMA 13/70B-chat, developed through continual pre-training and instruction tuning of LLaMA2 using large medical datasets. Our methodology leverages a comprehensive domain-specific data suite, including a large-scale, continual pre-training dataset with 129B tokens, an instruction tuning dataset with 214k samples, and a new medical evaluation benchmark (MIBE) across six critical medical tasks with 12 datasets. Our extensive evaluation using the MIBE shows that Me-LLaMA models achieve overall better performance than existing open-source medical LLMs in zero-shot, few-shot and supervised learning abilities. With task-specific instruction tuning, Me-LLaMA models outperform ChatGPT on 7 out of 8 datasets and GPT-4 on 5 out of 8 datasets. In addition, we investigated the catastrophic forgetting problem, and our results show that Me-LLaMA models outperform other open-source medical LLMs in mitigating this issue. Me-LLaMA is one of the largest open-source medical foundation LLMs that use both biomedical and clinical data. It exhibits superior performance across both general and medical tasks compared to other open-source medical LLMs, rendering it an attractive choice for medical AI applications. We release our models, datasets, and evaluation scripts at: //github.com/BIDS-Xu-Lab/Me-LLaMA.

Clustering in dynamic environments is of increasing importance, with broad applications ranging from real-time data analysis and online unsupervised learning to dynamic facility location problems. While meta-heuristics have shown promising effectiveness in static clustering tasks, their application for tracking optimal clustering solutions or robust clustering over time in dynamic environments remains largely underexplored. This is partly due to a lack of dynamic datasets with diverse, controllable, and realistic dynamic characteristics, hindering systematic performance evaluations of clustering algorithms in various dynamic scenarios. This deficiency leads to a gap in our understanding and capability to effectively design algorithms for clustering in dynamic environments. To bridge this gap, this paper introduces the Dynamic Dataset Generator (DDG). DDG features multiple dynamic Gaussian components integrated with a range of heterogeneous, local, and global changes. These changes vary in spatial and temporal severity, patterns, and domain of influence, providing a comprehensive tool for simulating a wide range of dynamic scenarios.

Knowledge graph completion (KGC) aims to alleviate the inherent incompleteness of knowledge graphs (KGs), which is a critical task for various applications, such as recommendations on the web. Although knowledge graph embedding (KGE) models have demonstrated superior predictive performance on KGC tasks, these models infer missing links in a black-box manner that lacks transparency and accountability, preventing researchers from developing accountable models. Existing KGE-based explanation methods focus on exploring key paths or isolated edges as explanations, which is information-less to reason target prediction. Additionally, the missing ground truth leads to these explanation methods being ineffective in quantitatively evaluating explored explanations. To overcome these limitations, we propose KGExplainer, a model-agnostic method that identifies connected subgraph explanations and distills an evaluator to assess them quantitatively. KGExplainer employs a perturbation-based greedy search algorithm to find key connected subgraphs as explanations within the local structure of target predictions. To evaluate the quality of the explored explanations, KGExplainer distills an evaluator from the target KGE model. By forwarding the explanations to the evaluator, our method can examine the fidelity of them. Extensive experiments on benchmark datasets demonstrate that KGExplainer yields promising improvement and achieves an optimal ratio of 83.3% in human evaluation.

Principal component analysis (PCA), along with its extensions to manifolds and outlier contaminated data, have been indispensable in computer vision and machine learning. In this work, we present a unifying formalism for PCA and its variants, and introduce a framework based on the flags of linear subspaces, ie a hierarchy of nested linear subspaces of increasing dimension, which not only allows for a common implementation but also yields novel variants, not explored previously. We begin by generalizing traditional PCA methods that either maximize variance or minimize reconstruction error. We expand these interpretations to develop a wide array of new dimensionality reduction algorithms by accounting for outliers and the data manifold. To devise a common computational approach, we recast robust and dual forms of PCA as optimization problems on flag manifolds. We then integrate tangent space approximations of principal geodesic analysis (tangent-PCA) into this flag-based framework, creating novel robust and dual geodesic PCA variations. The remarkable flexibility offered by the 'flagification' introduced here enables even more algorithmic variants identified by specific flag types. Last but not least, we propose an effective convergent solver for these flag-formulations employing the Stiefel manifold. Our empirical results on both real-world and synthetic scenarios, demonstrate the superiority of our novel algorithms, especially in terms of robustness to outliers on manifolds.

As a primary means of information acquisition, information retrieval (IR) systems, such as search engines, have integrated themselves into our daily lives. These systems also serve as components of dialogue, question-answering, and recommender systems. The trajectory of IR has evolved dynamically from its origins in term-based methods to its integration with advanced neural models. While the neural models excel at capturing complex contextual signals and semantic nuances, thereby reshaping the IR landscape, they still face challenges such as data scarcity, interpretability, and the generation of contextually plausible yet potentially inaccurate responses. This evolution requires a combination of both traditional methods (such as term-based sparse retrieval methods with rapid response) and modern neural architectures (such as language models with powerful language understanding capacity). Meanwhile, the emergence of large language models (LLMs), typified by ChatGPT and GPT-4, has revolutionized natural language processing due to their remarkable language understanding, generation, generalization, and reasoning abilities. Consequently, recent research has sought to leverage LLMs to improve IR systems. Given the rapid evolution of this research trajectory, it is necessary to consolidate existing methodologies and provide nuanced insights through a comprehensive overview. In this survey, we delve into the confluence of LLMs and IR systems, including crucial aspects such as query rewriters, retrievers, rerankers, and readers. Additionally, we explore promising directions within this expanding field.

As an effective strategy, data augmentation (DA) alleviates data scarcity scenarios where deep learning techniques may fail. It is widely applied in computer vision then introduced to natural language processing and achieves improvements in many tasks. One of the main focuses of the DA methods is to improve the diversity of training data, thereby helping the model to better generalize to unseen testing data. In this survey, we frame DA methods into three categories based on the diversity of augmented data, including paraphrasing, noising, and sampling. Our paper sets out to analyze DA methods in detail according to the above categories. Further, we also introduce their applications in NLP tasks as well as the challenges.

Graph Neural Networks (GNNs) are widely used for analyzing graph-structured data. Most GNN methods are highly sensitive to the quality of graph structures and usually require a perfect graph structure for learning informative embeddings. However, the pervasiveness of noise in graphs necessitates learning robust representations for real-world problems. To improve the robustness of GNN models, many studies have been proposed around the central concept of Graph Structure Learning (GSL), which aims to jointly learn an optimized graph structure and corresponding representations. Towards this end, in the presented survey, we broadly review recent progress of GSL methods for learning robust representations. Specifically, we first formulate a general paradigm of GSL, and then review state-of-the-art methods classified by how they model graph structures, followed by applications that incorporate the idea of GSL in other graph tasks. Finally, we point out some issues in current studies and discuss future directions.

北京阿比特科技有限公司