亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Timeliness and contextual accuracy of recommendations are increasingly important when delivering contemporary digital marketing experiences. Conventional recommender systems (RS) suggest relevant but time-invariant items to users by accounting for their past purchases. These recommendations only map to customers' general preferences rather than a customer's specific needs immediately preceding a purchase. In contrast, RSs that consider the order of transactions, purchases, or experiences to measure evolving preferences can offer more salient and effective recommendations to customers: Sequential RSs not only benefit from a better behavioral understanding of a user's current needs but also better predictive power. In this paper, we demonstrate and rank the effectiveness of a sequential recommendation system by utilizing a production dataset of over 2.7 million credit card transactions for 46K cardholders. The method first employs an autoencoder on raw transaction data and submits observed transaction encodings to a GRU-based sequential model. The sequential model produces a MAP@1 metric of 47% on the out-of-sample test set, in line with existing research. We also discuss implications for embedding real-time predictions using the sequential RS into Nexus, a scalable, low-latency, event-based digital experience architecture.

相關內容

The mainstream of data-driven abstractive summarization models tends to explore the correlations rather than the causal relationships. Among such correlations, there can be spurious ones which suffer from the language prior learned from the training corpus and therefore undermine the overall effectiveness of the learned model. To tackle this issue, we introduce a Structural Causal Model (SCM) to induce the underlying causal structure of the summarization data. We assume several latent causal factors and non-causal factors, representing the content and style of the document and summary. Theoretically, we prove that the latent factors in our SCM can be identified by fitting the observed training data under certain conditions. On the basis of this, we propose a Causality Inspired Sequence-to-Sequence model (CI-Seq2Seq) to learn the causal representations that can mimic the causal factors, guiding us to pursue causal information for summary generation. The key idea is to reformulate the Variational Auto-encoder (VAE) to fit the joint distribution of the document and summary variables from the training corpus. Experimental results on two widely used text summarization datasets demonstrate the advantages of our approach.

The future of automated driving (AD) is rooted in the development of robust, fair and explainable artificial intelligence methods. Upon request, automated vehicles must be able to explain their decisions to the driver and the car passengers, to the pedestrians and other vulnerable road users and potentially to external auditors in case of accidents. However, nowadays, most explainable methods still rely on quantitative analysis of the AD scene representations captured by multiple sensors. This paper proposes a novel representation of AD scenes, called Qualitative eXplainable Graph (QXG), dedicated to qualitative spatiotemporal reasoning of long-term scenes. The construction of this graph exploits the recent Qualitative Constraint Acquisition paradigm. Our experimental results on NuScenes, an open real-world multi-modal dataset, show that the qualitative eXplainable graph of an AD scene composed of 40 frames can be computed in real-time and light in space storage which makes it a potentially interesting tool for improved and more trustworthy perception and control processes in AD.

Quantum computation represents a computational paradigm whose distinctive attributes confer the ability to devise algorithms with asymptotic performance levels significantly superior to those achievable via classical computation. Recent strides have been taken to apply this computational framework in tackling and resolving various issues related to text processing. The resultant solutions demonstrate marked advantages over their classical counterparts. This study employs quantum computation to efficaciously surmount text processing challenges, particularly those involving string comparison. The focus is on the alignment of fixed-length substrings within two input strings. Specifically, given two input strings, $x$ and $y$, both of length $n$, and a value $d \leq n$, we want to verify the following conditions: the existence of a common prefix of length $d$, the presence of a common substring of length $d$ beginning at position $j$ (with $0 \leq j < n$) and, the presence of any common substring of length $d$ beginning in both strings at the same position. Such problems find applications as sub-procedures in a variety of problems concerning text processing and sequence analysis. Notably, our approach furnishes polylogarithmic solutions, a stark contrast to the linear complexity inherent in the best classical alternatives.

Popularity bias is a widespread problem in the field of recommender systems, where popular items tend to dominate recommendation results. In this work, we propose 'Test Time Embedding Normalization' as a simple yet effective strategy for mitigating popularity bias, which surpasses the performance of the previous mitigation approaches by a significant margin. Our approach utilizes the normalized item embedding during the inference stage to control the influence of embedding magnitude, which is highly correlated with item popularity. Through extensive experiments, we show that our method combined with the sampled softmax loss effectively reduces popularity bias compare to previous approaches for bias mitigation. We further investigate the relationship between user and item embeddings and find that the angular similarity between embeddings distinguishes preferable and non-preferable items regardless of their popularity. The analysis explains the mechanism behind the success of our approach in eliminating the impact of popularity bias. Our code is available at //github.com/ml-postech/TTEN.

Quantum statistical queries provide a theoretical framework for investigating the computational power of a learner with limited quantum resources. This model is particularly relevant in the current context, where available quantum devices are subject to severe noise and have limited quantum memory. On the other hand, the framework of quantum differential privacy demonstrates that noise can, in some cases, benefit the computation, enhancing robustness and statistical security. In this work, we establish an equivalence between quantum statistical queries and quantum differential privacy in the local model, extending a celebrated classical result to the quantum setting. Furthermore, we derive strong data processing inequalities for the quantum relative entropy under local differential privacy and apply this result to the task of asymmetric hypothesis testing with restricted measurements. Finally, we consider the task of quantum multi-party computation under local differential privacy. As a proof of principle, we demonstrate that the parity function is efficiently learnable in this model, whereas the corresponding classical task requires exponentially many samples.

Geometric deep learning (GDL), which is based on neural network architectures that incorporate and process symmetry information, has emerged as a recent paradigm in artificial intelligence. GDL bears particular promise in molecular modeling applications, in which various molecular representations with different symmetry properties and levels of abstraction exist. This review provides a structured and harmonized overview of molecular GDL, highlighting its applications in drug discovery, chemical synthesis prediction, and quantum chemistry. Emphasis is placed on the relevance of the learned molecular features and their complementarity to well-established molecular descriptors. This review provides an overview of current challenges and opportunities, and presents a forecast of the future of GDL for molecular sciences.

Humans perceive the world by concurrently processing and fusing high-dimensional inputs from multiple modalities such as vision and audio. Machine perception models, in stark contrast, are typically modality-specific and optimised for unimodal benchmarks, and hence late-stage fusion of final representations or predictions from each modality (`late-fusion') is still a dominant paradigm for multimodal video classification. Instead, we introduce a novel transformer based architecture that uses `fusion bottlenecks' for modality fusion at multiple layers. Compared to traditional pairwise self-attention, our model forces information between different modalities to pass through a small number of bottleneck latents, requiring the model to collate and condense the most relevant information in each modality and only share what is necessary. We find that such a strategy improves fusion performance, at the same time reducing computational cost. We conduct thorough ablation studies, and achieve state-of-the-art results on multiple audio-visual classification benchmarks including Audioset, Epic-Kitchens and VGGSound. All code and models will be released.

Recent advances in maximizing mutual information (MI) between the source and target have demonstrated its effectiveness in text generation. However, previous works paid little attention to modeling the backward network of MI (i.e., dependency from the target to the source), which is crucial to the tightness of the variational information maximization lower bound. In this paper, we propose Adversarial Mutual Information (AMI): a text generation framework which is formed as a novel saddle point (min-max) optimization aiming to identify joint interactions between the source and target. Within this framework, the forward and backward networks are able to iteratively promote or demote each other's generated instances by comparing the real and synthetic data distributions. We also develop a latent noise sampling strategy that leverages random variations at the high-level semantic space to enhance the long term dependency in the generation process. Extensive experiments based on different text generation tasks demonstrate that the proposed AMI framework can significantly outperform several strong baselines, and we also show that AMI has potential to lead to a tighter lower bound of maximum mutual information for the variational information maximization problem.

Benefit from the quick development of deep learning techniques, salient object detection has achieved remarkable progresses recently. However, there still exists following two major challenges that hinder its application in embedded devices, low resolution output and heavy model weight. To this end, this paper presents an accurate yet compact deep network for efficient salient object detection. More specifically, given a coarse saliency prediction in the deepest layer, we first employ residual learning to learn side-output residual features for saliency refinement, which can be achieved with very limited convolutional parameters while keep accuracy. Secondly, we further propose reverse attention to guide such side-output residual learning in a top-down manner. By erasing the current predicted salient regions from side-output features, the network can eventually explore the missing object parts and details which results in high resolution and accuracy. Experiments on six benchmark datasets demonstrate that the proposed approach compares favorably against state-of-the-art methods, and with advantages in terms of simplicity, efficiency (45 FPS) and model size (81 MB).

Graph neural networks (GNNs) are a popular class of machine learning models whose major advantage is their ability to incorporate a sparse and discrete dependency structure between data points. Unfortunately, GNNs can only be used when such a graph-structure is available. In practice, however, real-world graphs are often noisy and incomplete or might not be available at all. With this work, we propose to jointly learn the graph structure and the parameters of graph convolutional networks (GCNs) by approximately solving a bilevel program that learns a discrete probability distribution on the edges of the graph. This allows one to apply GCNs not only in scenarios where the given graph is incomplete or corrupted but also in those where a graph is not available. We conduct a series of experiments that analyze the behavior of the proposed method and demonstrate that it outperforms related methods by a significant margin.

北京阿比特科技有限公司