In this paper, we investigate the existence of self-dual MRD codes $C\subset L^n$, where $L/F$ is an arbitrary field extension of degree $m\geq n$. We then apply our results to the case of finite fields, and prove that if $m=n$ and $F=\mathbb{F}_q$, a self-dual MRD code exists if and only if $q\equiv n\equiv 3 \ [4].$
In this paper we study the problem of estimating the unknown mean $\theta$ of a unit variance Gaussian distribution in a locally differentially private (LDP) way. In the high-privacy regime ($\epsilon\le 0.67$), we identify the exact optimal privacy mechanism that minimizes the variance of the estimator asymptotically. It turns out to be the extraordinarily simple sign mechanism that applies randomized response to the sign of $X_i-\theta$. However, since this optimal mechanism depends on the unknown mean $\theta$, we employ a two-stage LDP parameter estimation procedure which requires splitting agents into two groups. The first $n_1$ observations are used to consistently but not necessarily efficiently estimate the parameter $\theta$ by $\tilde{\theta}_{n_1}$. Then this estimate is updated by applying the sign mechanism with $\tilde{\theta}_{n_1}$ instead of $\theta$ to the remaining $n-n_1$ observations, to obtain an LDP and efficient estimator of the unknown mean.
We consider the problem of determining the asymptotics of the manifold $n$-widths of Sobolev and Besov spaces with error measured in the $L_p$-norm. The manifold widths control how efficiently these spaces can be approximated by general non-linear parametric methods with the restriction that the parameter selection and parameterization maps must be continuous. Existing upper and lower bounds only match when the Sobolev or Besov smoothness index $q$ satisfies $q\leq p$. We close this gap and extend the existing lower bounds to all $1\leq p,q\leq \infty$. In the process, we show that the Bernstein widths, which are typically used to lower bound the manifold widths, may decay asymptotically slower than the manifold widths.
We construct a new family of permutationally invariant codes that correct $t$ Pauli errors for any $t\ge 1$. We also show that codes in the new family correct quantum deletion errors as well as spontaneous decay errors. Our construction contains some of the previously known permutationally invariant quantum codes as particular cases, which also admit transversal gates. In many cases, the codes in the new family are shorter than the best previously known explicit permutationally invariant codes for Pauli errors and deletions. Furthermore, our new code family includes a new $((4,2,2))$ optimal single-deletion-correcting code. As a separate result, we generalize the conditions for permutationally invariant codes to correct $t$ Pauli errors from the previously known results for $t=1$ to any number of errors. For small $t$, these conditions can be used to construct new examples of codes by computer.
Construction of a large class of Mutually Unbiased Bases (MUBs) for non-prime power composite dimensions ($d = k\times s$) is a long standing open problem, which leads to different construction methods for the class Approximate MUBs (AMUBs) by relaxing the criterion that the absolute value of the dot product between two vectors chosen from different bases should be $\leq \frac{\beta}{\sqrt{d}}$. In this chapter, we consider a more general class of AMUBs (ARMUBs, considering the real ones too), compared to our earlier work in [Cryptography and Communications, 14(3): 527--549, 2022]. We note that the quality of AMUBs (ARMUBs) constructed using RBD$(X,A)$ with $|X|= d$, critically depends on the parameters, $|s-k|$, $\mu$ (maximum number of elements common between any pair of blocks), and the set of block sizes. We present the construction of $\mathcal{O}(\sqrt{d})$ many $\beta$-AMUBs for composite $d$ when $|s-k|< \sqrt{d}$, using RBDs having block sizes approximately $\sqrt{d}$, such that $|\braket{\psi^l_i|\psi^m_j}| \leq \frac{\beta}{\sqrt{d}}$ where $\beta = 1 + \frac{|s-k|}{2\sqrt{d}}+ \mathcal{O}(d^{-1}) \leq 2$. Moreover, if real Hadamard matrix of order $k$ or $s$ exists, then one can construct at least $N(k)+1$ (or $N(s)+1$) many $\beta$-ARMUBs for dimension $d$, with $\beta \leq 2 - \frac{|s-k|}{2\sqrt{d}}+ \mathcal{O}(d^{-1})< 2$, where $N(w)$ is the number of MOLS$(w)$. This improves and generalizes some of our previous results for ARMUBs from two points, viz., the real cases are now extended to complex ones too. The earlier efforts use some existing RBDs, whereas here we consider new instances of RBDs that provide better results. Similar to the earlier cases, the AMUBs (ARMUBs) constructed using RBDs are in general very sparse, where the sparsity $(\epsilon)$ is $1 - \mathcal{O}(d^{-\frac{1}{2}})$.
In this note, we apply some techniques developed in [1]-[3] to give a particular construction of bivariate Abelian Codes from cyclic codes, multiplying their dimension and preserving their apparent distance. We show that, in the case of cyclic codes whose maximum BCH bound equals its minimum distance the obtained abelian code verifies the same property; that is, the strong apparent distance and the minimum distance coincide. We finally use this construction to multiply Reed-Solomon codes to abelian codes
We tackle estimating sparse coefficients in a linear regression when the covariates are sampled from an $L$-subexponential random vector. This vector belongs to a class of distributions that exhibit heavier tails than Gaussian random vector. Previous studies have established error bounds similar to those derived for Gaussian random vectors. However, these methods require stronger conditions than those used for Gaussian random vectors to derive the error bounds. In this study, we present an error bound identical to the one obtained for Gaussian random vectors up to constant factors without imposing stronger conditions, when the covariates are drawn from an $L$-subexponential random vector. Interestingly, we employ an $\ell_1$-penalized Huber regression, which is known for its robustness against heavy-tailed random noises rather than covariates. We believe that this study uncovers a new aspect of the $\ell_1$-penalized Huber regression method.
In this work, we provide four methods for constructing new maximum sum-rank distance (MSRD) codes. The first method, a variant of cartesian products, allows faster decoding than known MSRD codes of the same parameters. The other three methods allow us to extend or modify existing MSRD codes in order to obtain new explicit MSRD codes for sets of matrix sizes (numbers of rows and columns in different blocks) that were not attainable by previous constructions. In this way, we show that MSRD codes exist (by giving explicit constructions) for new ranges of parameters, in particular with different numbers of rows and columns at different positions.
An $s{\operatorname{-}}t$ minimum cut in a graph corresponds to a minimum weight subset of edges whose removal disconnects vertices $s$ and $t$. Finding such a cut is a classic problem that is dual to that of finding a maximum flow from $s$ to $t$. In this work we describe a quantum algorithm for the minimum $s{\operatorname{-}}t$ cut problem on undirected graphs. For an undirected graph with $n$ vertices, $m$ edges, and integral edge weights bounded by $W$, the algorithm computes with high probability the weight of a minimum $s{\operatorname{-}}t$ cut after $\widetilde O(\sqrt{m} n^{5/6} W^{1/3})$ queries to the adjacency list of $G$. For simple graphs this bound is always $\widetilde O(n^{11/6})$, even in the dense case when $m = \Omega(n^2)$. In contrast, a randomized algorithm must make $\Omega(m)$ queries to the adjacency list of a simple graph $G$ even to decide whether $s$ and $t$ are connected.
We give an approximate Menger-type theorem for when a graph $G$ contains two $X-Y$ paths $P_1$ and $P_2$ such that $P_1 \cup P_2$ is an induced subgraph of $G$. More generally, we prove that there exists a function $f(d) \in O(d)$, such that for every graph $G$ and $X,Y \subseteq V(G)$, either there exist two $X-Y$ paths $P_1$ and $P_2$ such that the distance between $P_1$ and $P_2$ is at least $d$, or there exists $v \in V(G)$ such that the ball of radius $f(d)$ centered at $v$ intersects every $X-Y$ path.
The hull of a linear code $C$ is the intersection of $C$ with its dual code. We present and analyze the number of linear $q$-ary codes of the same length and dimension but with different dimensions for their hulls. We prove that for given dimension $k$ and length $n\ge 2k$ the number of all $[n,k]_q$ linear codes with hull dimension $l$ decreases as $l$ increases. We also present classification results for binary and ternary linear codes with trivial hulls (LCD and self-orthogonal) for some values of the length $n$ and dimension $k$, comparing the obtained numbers with the number of all linear codes for the given $n$ and $k$.