亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Generating code from a natural language using Large Language Models (LLMs) such as ChatGPT, seems groundbreaking. Yet, with more extensive use, it's evident that this approach has its own limitations. The inherent ambiguity of natural language presents challenges for complex software designs. Accordingly, our research offers an Agile Model-Driven Development (MDD) approach that enhances code auto-generation using OpenAI's GPT-4. Our work emphasizes "Agility" as a significant contribution to the current MDD method, particularly when the model undergoes changes or needs deployment in a different programming language. Thus, we present a case-study showcasing a multi-agent simulation system of an Unmanned Vehicle Fleet. In the first and second layer of our approach, we constructed a textual representation of the case-study using Unified Model Language (UML) diagrams. In the next layer, we introduced two sets of constraints that minimize model ambiguity. Object Constraints Language (OCL) is applied to fine-tune the code constructions details, while FIPA ontology is used to shape communication semantics and protocols. Ultimately, leveraging GPT-4, our last layer auto-generates code in both Java and Python. The Java code is deployed within the JADE framework, while the Python code is deployed in PADE framework. Concluding our research, we engaged in a comprehensive evaluation of the generated code. From a behavioural standpoint, the auto-generated code aligned perfectly with the expected UML sequence diagram. Structurally, we compared the complexity of code derived from UML diagrams constrained solely by OCL to that influenced by both OCL and FIPA-ontology. Results indicate that ontology-constrained model produce inherently more intricate code, but it remains manageable and low-risk for further testing and maintenance.

相關內容

統一(yi)建(jian)模語(yu)言(yan)(UML,Unified Modeling Language)是由國(guo)(guo)際(ji)軟(ruan)件(jian)(jian)行業組織(zhi) OMG(對(dui)象(xiang)(xiang)管理(li)集團 )自(zi) 1997 年起(qi)研發的(de)用(yong)于(yu) IT 各領域建(jian)模的(de)一(yi)套(tao)標準、通(tong)用(yong)、圖形(xing)化的(de)面向(xiang)對(dui)象(xiang)(xiang)(OO)建(jian)模語(yu)言(yan),對(dui)應(ying)的(de)國(guo)(guo)際(ji)標準為 ISO/IEC 19505。UML 具有簡(jian)單(dan)、直觀(guan)、形(xing)象(xiang)(xiang)、表達力(li)強等特點,因此不僅(jin)常用(yong)于(yu)復(fu)(fu)雜軟(ruan)件(jian)(jian)系統架構的(de)建(jian)模和面向(xiang)對(dui)象(xiang)(xiang)分(fen)析與(yu)設計(OOAD),也可用(yong)于(yu)復(fu)(fu)雜業務流程及(ji)系統需求(qiu)的(de)建(jian)模。UML 當前的(de)最新(xin)版本為 v2.5(2015.3)。 UML 起(qi)源于(yu) 3 位著名的(de)軟(ruan)件(jian)(jian)工程方法(fa)(fa)學家 Grady Booch、James Rumbaugh、Ivar Jacobson 融合、統一(yi)了(le)他們各自(zi)原(yuan)來的(de)建(jian)模語(yu)言(yan)和方法(fa)(fa)。

Since the launch of ChatGPT, a powerful AI Chatbot developed by OpenAI, large language models (LLMs) have made significant advancements in both academia and industry, bringing about a fundamental engineering paradigm shift in many areas. While LLMs are powerful, it is also crucial to best use their power where "prompt'' plays a core role. However, the booming LLMs themselves, including excellent APIs like ChatGPT, have several inherent limitations: 1) temporal lag of training data, and 2) the lack of physical capabilities to perform external actions. Recently, we have observed the trend of utilizing prompt-based tools to better utilize the power of LLMs for downstream tasks, but a lack of systematic literature and standardized terminology, partly due to the rapid evolution of this field. Therefore, in this work, we survey related prompting tools and promote the concept of the "Prompting Framework" (PF), i.e. the framework for managing, simplifying, and facilitating interaction with large language models. We define the lifecycle of the PF as a hierarchical structure, from bottom to top, namely: Data Level, Base Level, Execute Level, and Service Level. We also systematically depict the overall landscape of the emerging PF field and discuss potential future research and challenges. To continuously track the developments in this area, we maintain a repository at //github.com/lxx0628/Prompting-Framework-Survey, which can be a useful resource sharing platform for both academic and industry in this field.

Large Language Models (LLMs) have garnered significant attention for their powerful ability in natural language understanding and reasoning. In this paper, we present a comprehensive empirical study to explore the performance of LLMs on misinformation detection tasks. This study stands as the pioneering investigation into the understanding capabilities of multiple LLMs regarding both content and propagation across social media platforms. Our empirical studies on five misinformation detection datasets show that LLMs with diverse prompts achieve comparable performance in text-based misinformation detection but exhibit notably constrained capabilities in comprehending propagation structure compared to existing models in propagation-based misinformation detection. Besides, we further design four instruction-tuned strategies to enhance LLMs for both content and propagation-based misinformation detection. These strategies boost LLMs to actively learn effective features from multiple instances or hard instances, and eliminate irrelevant propagation structures, thereby achieving better detection performance. Extensive experiments further demonstrate LLMs would play a better capacity in content and propagation structure under these proposed strategies and achieve promising detection performance. These findings highlight the potential ability of LLMs to detect misinformation.

The Large Vision-Language Model (LVLM) has enhanced the performance of various downstream tasks in visual-language understanding. Most existing approaches encode images and videos into separate feature spaces, which are then fed as inputs to large language models. However, due to the lack of unified tokenization for images and videos, namely misalignment before projection, it becomes challenging for a Large Language Model (LLM) to learn multi-modal interactions from several poor projection layers. In this work, we unify visual representation into the language feature space to advance the foundational LLM towards a unified LVLM. As a result, we establish a simple but robust LVLM baseline, Video-LLaVA, which learns from a mixed dataset of images and videos, mutually enhancing each other. Video-LLaVA achieves superior performances on a broad range of 9 image benchmarks across 5 image question-answering datasets and 4 image benchmark toolkits. Additionally, our Video-LLaVA also outperforms Video-ChatGPT by 5.8%, 9.9%, 18.6%, and 10.1% on MSRVTT, MSVD, TGIF, and ActivityNet, respectively. Notably, extensive experiments demonstrate that Video-LLaVA mutually benefits images and videos within a unified visual representation, outperforming models designed specifically for images or videos. We aim for this work to provide modest insights into the multi-modal inputs for the LLM.

Large language models (LLMs) have emerged as a new paradigm for Text-to-SQL task. However, the absence of a systematical benchmark inhibits the development of designing effective, efficient and economic LLM-based Text-to-SQL solutions. To address this challenge, in this paper, we first conduct a systematical and extensive comparison over existing prompt engineering methods, including question representation, example selection and example organization, and with these experimental results, we elaborate their pros and cons. Based on these findings, we propose a new integrated solution, named DAIL-SQL, which refreshes the Spider leaderboard with 86.6% execution accuracy and sets a new bar. To explore the potential of open-source LLM, we investigate them in various scenarios, and further enhance their performance with supervised fine-tuning. Our explorations highlight open-source LLMs' potential in Text-to-SQL, as well as the advantages and disadvantages of the supervised fine-tuning. Additionally, towards an efficient and economic LLM-based Text-to-SQL solution, we emphasize the token efficiency in prompt engineering and compare the prior studies under this metric. We hope that our work provides a deeper understanding of Text-to-SQL with LLMs, and inspires further investigations and broad applications.

OPC UA is an industry-standard machine-to-machine communication protocol in the Industrial Internet of Things. It relies on time-sensitive networking to meet the real-time requirements of various applications. Time-sensitive networking is implemented through various queueing disciplines (qdiscs), including Time Aware Priority, Multiqueue Priority, Earliest TxTime First, and Credit-Based Shaper. Despite their significance, prior studies on these qdiscs have been limited to a few. They have often been confined to point-to-point network topologies using proprietary software or specialized hardware. This study builds upon existing research by evaluating all these qdiscs in point-to-point and bridged topologies using open-source software on commercial off-the-shelf hardware. We first identify the optimal configuration for each qdisc and then compare their jitter, latency, and reliability through experiments. Our results show that open-source OPC UA on commercial off-the-shelf hardware can effectively meet the stringent real-time requirements of many industrial applications and provide a foundation for future research and practical deployments.

Large Language Models (LLMs) have significantly advanced natural language processing (NLP) with their impressive language understanding and generation capabilities. However, their performance may be suboptimal for long-tail or domain-specific tasks due to limited exposure to domain-specific knowledge and vocabulary. Additionally, the lack of transparency of most state-of-the-art (SOTA) LLMs, which can only be accessed via APIs, impedes further fine-tuning with custom data. Moreover, data privacy is a significant concern. To address these challenges, we propose the novel Parametric Knowledge Guiding (PKG) framework, which equips LLMs with a knowledge-guiding module to access relevant knowledge at runtime without altering the LLMs' parameters. Our PKG is based on open-source "white-box" small language models, allowing offline storage of any knowledge that LLMs require. We demonstrate that our PKG framework can enhance the performance of "black-box" LLMs on a range of long-tail and domain-specific downstream tasks requiring factual, tabular, medical, and multimodal knowledge.

Text Classification is the most essential and fundamental problem in Natural Language Processing. While numerous recent text classification models applied the sequential deep learning technique, graph neural network-based models can directly deal with complex structured text data and exploit global information. Many real text classification applications can be naturally cast into a graph, which captures words, documents, and corpus global features. In this survey, we bring the coverage of methods up to 2023, including corpus-level and document-level graph neural networks. We discuss each of these methods in detail, dealing with the graph construction mechanisms and the graph-based learning process. As well as the technological survey, we look at issues behind and future directions addressed in text classification using graph neural networks. We also cover datasets, evaluation metrics, and experiment design and present a summary of published performance on the publicly available benchmarks. Note that we present a comprehensive comparison between different techniques and identify the pros and cons of various evaluation metrics in this survey.

We introduce a new language representation model called BERT, which stands for Bidirectional Encoder Representations from Transformers. Unlike recent language representation models, BERT is designed to pre-train deep bidirectional representations by jointly conditioning on both left and right context in all layers. As a result, the pre-trained BERT representations can be fine-tuned with just one additional output layer to create state-of-the-art models for a wide range of tasks, such as question answering and language inference, without substantial task-specific architecture modifications. BERT is conceptually simple and empirically powerful. It obtains new state-of-the-art results on eleven natural language processing tasks, including pushing the GLUE benchmark to 80.4% (7.6% absolute improvement), MultiNLI accuracy to 86.7 (5.6% absolute improvement) and the SQuAD v1.1 question answering Test F1 to 93.2 (1.5% absolute improvement), outperforming human performance by 2.0%.

We propose a novel single shot object detection network named Detection with Enriched Semantics (DES). Our motivation is to enrich the semantics of object detection features within a typical deep detector, by a semantic segmentation branch and a global activation module. The segmentation branch is supervised by weak segmentation ground-truth, i.e., no extra annotation is required. In conjunction with that, we employ a global activation module which learns relationship between channels and object classes in a self-supervised manner. Comprehensive experimental results on both PASCAL VOC and MS COCO detection datasets demonstrate the effectiveness of the proposed method. In particular, with a VGG16 based DES, we achieve an mAP of 81.7 on VOC2007 test and an mAP of 32.8 on COCO test-dev with an inference speed of 31.5 milliseconds per image on a Titan Xp GPU. With a lower resolution version, we achieve an mAP of 79.7 on VOC2007 with an inference speed of 13.0 milliseconds per image.

Semantic Role Labeling (SRL) is believed to be a crucial step towards natural language understanding and has been widely studied. Recent years, end-to-end SRL with recurrent neural networks (RNN) has gained increasing attention. However, it remains a major challenge for RNNs to handle structural information and long range dependencies. In this paper, we present a simple and effective architecture for SRL which aims to address these problems. Our model is based on self-attention which can directly capture the relationships between two tokens regardless of their distance. Our single model achieves F$_1=83.4$ on the CoNLL-2005 shared task dataset and F$_1=82.7$ on the CoNLL-2012 shared task dataset, which outperforms the previous state-of-the-art results by $1.8$ and $1.0$ F$_1$ score respectively. Besides, our model is computationally efficient, and the parsing speed is 50K tokens per second on a single Titan X GPU.

北京阿比特科技有限公司