Large Language Models (LLMs) have garnered significant attention for their powerful ability in natural language understanding and reasoning. In this paper, we present a comprehensive empirical study to explore the performance of LLMs on misinformation detection tasks. This study stands as the pioneering investigation into the understanding capabilities of multiple LLMs regarding both content and propagation across social media platforms. Our empirical studies on five misinformation detection datasets show that LLMs with diverse prompts achieve comparable performance in text-based misinformation detection but exhibit notably constrained capabilities in comprehending propagation structure compared to existing models in propagation-based misinformation detection. Besides, we further design four instruction-tuned strategies to enhance LLMs for both content and propagation-based misinformation detection. These strategies boost LLMs to actively learn effective features from multiple instances or hard instances, and eliminate irrelevant propagation structures, thereby achieving better detection performance. Extensive experiments further demonstrate LLMs would play a better capacity in content and propagation structure under these proposed strategies and achieve promising detection performance. These findings highlight the potential ability of LLMs to detect misinformation.
Foundation Models (FMs) such as GPT-4 encoded with vast knowledge and powerful emergent abilities have achieved remarkable success in various natural language processing and computer vision tasks. Grounding FMs by adapting them to domain-specific tasks or augmenting them with domain-specific knowledge enables us to exploit the full potential of FMs. However, grounding FMs faces several challenges, stemming primarily from constrained computing resources, data privacy, model heterogeneity, and model ownership. Federated Transfer Learning (FTL), the combination of federated learning and transfer learning, provides promising solutions to address these challenges. In recent years, the need for grounding FMs leveraging FTL, coined FTL-FM, has arisen strongly in both academia and industry. Motivated by the strong growth in FTL-FM research and the potential impact of FTL-FM on industrial applications, we propose an FTL-FM framework that formulates problems of grounding FMs in the federated learning setting, construct a detailed taxonomy based on the FTL-FM framework to categorize state-of-the-art FTL-FM works, and comprehensively overview FTL-FM works based on the proposed taxonomy. We also establish correspondences between FTL-FM and conventional phases of adapting FM so that FM practitioners can align their research works with FTL-FM. In addition, we overview advanced efficiency-improving and privacy-preserving techniques because efficiency and privacy are critical concerns in FTL-FM. Last, we discuss opportunities and future research directions of FTL-FM.
Large Language Models (LLMs) have emerged as a pivotal force in language technology. Their robust reasoning capabilities and expansive knowledge repositories have enabled exceptional zero-shot generalization abilities across various facets of the natural language processing field, including information retrieval (IR). In this paper, we conduct an in-depth investigation into the utility of documents generated by LLMs for IR. We introduce a simple yet effective framework, Multi-Text Generation Integration (MuGI), to augment existing IR methodologies. Specifically, we prompt LLMs to generate multiple pseudo references and integrate with query for retrieval. The training-free MuGI model eclipses existing query expansion strategies, setting a new standard in sparse retrieval. It outstrips supervised counterparts like ANCE and DPR, achieving a notable over 18% enhancement in BM25 on the TREC DL dataset and a 7.5% increase on BEIR. Through MuGI, we have forged a rapid and high-fidelity re-ranking pipeline. This allows a relatively small 110M parameter retriever to surpass the performance of larger 3B models in in-domain evaluations, while also bridging the gap in out-of-distribution situations. We release our code and all generated references at //github.com/lezhang7/Retrieval_MuGI.
The primary aim of Knowledge Graph embeddings (KGE) is to learn low-dimensional representations of entities and relations for predicting missing facts. While rotation-based methods like RotatE and QuatE perform well in KGE, they face two challenges: limited model flexibility requiring proportional increases in relation size with entity dimension, and difficulties in generalizing the model for higher-dimensional rotations. To address these issues, we introduce OrthogonalE, a novel KGE model employing matrices for entities and block-diagonal orthogonal matrices with Riemannian optimization for relations. This approach enhances the generality and flexibility of KGE models. The experimental results indicate that our new KGE model, OrthogonalE, is both general and flexible, significantly outperforming state-of-the-art KGE models while substantially reducing the number of relation parameters.
Since the launch of ChatGPT, a powerful AI Chatbot developed by OpenAI, large language models (LLMs) have made significant advancements in both academia and industry, bringing about a fundamental engineering paradigm shift in many areas. While LLMs are powerful, it is also crucial to best use their power where "prompt'' plays a core role. However, the booming LLMs themselves, including excellent APIs like ChatGPT, have several inherent limitations: 1) temporal lag of training data, and 2) the lack of physical capabilities to perform external actions. Recently, we have observed the trend of utilizing prompt-based tools to better utilize the power of LLMs for downstream tasks, but a lack of systematic literature and standardized terminology, partly due to the rapid evolution of this field. Therefore, in this work, we survey related prompting tools and promote the concept of the "Prompting Framework" (PF), i.e. the framework for managing, simplifying, and facilitating interaction with large language models. We define the lifecycle of the PF as a hierarchical structure, from bottom to top, namely: Data Level, Base Level, Execute Level, and Service Level. We also systematically depict the overall landscape of the emerging PF field and discuss potential future research and challenges. To continuously track the developments in this area, we maintain a repository at //github.com/lxx0628/Prompting-Framework-Survey, which can be a useful resource sharing platform for both academic and industry in this field.
Large language models (LLMs) have demonstrated impressive capabilities in natural language processing. However, their internal mechanisms are still unclear and this lack of transparency poses unwanted risks for downstream applications. Therefore, understanding and explaining these models is crucial for elucidating their behaviors, limitations, and social impacts. In this paper, we introduce a taxonomy of explainability techniques and provide a structured overview of methods for explaining Transformer-based language models. We categorize techniques based on the training paradigms of LLMs: traditional fine-tuning-based paradigm and prompting-based paradigm. For each paradigm, we summarize the goals and dominant approaches for generating local explanations of individual predictions and global explanations of overall model knowledge. We also discuss metrics for evaluating generated explanations, and discuss how explanations can be leveraged to debug models and improve performance. Lastly, we examine key challenges and emerging opportunities for explanation techniques in the era of LLMs in comparison to conventional machine learning models.
Large Language Models (LLMs) have significantly advanced natural language processing (NLP) with their impressive language understanding and generation capabilities. However, their performance may be suboptimal for long-tail or domain-specific tasks due to limited exposure to domain-specific knowledge and vocabulary. Additionally, the lack of transparency of most state-of-the-art (SOTA) LLMs, which can only be accessed via APIs, impedes further fine-tuning with custom data. Moreover, data privacy is a significant concern. To address these challenges, we propose the novel Parametric Knowledge Guiding (PKG) framework, which equips LLMs with a knowledge-guiding module to access relevant knowledge at runtime without altering the LLMs' parameters. Our PKG is based on open-source "white-box" small language models, allowing offline storage of any knowledge that LLMs require. We demonstrate that our PKG framework can enhance the performance of "black-box" LLMs on a range of long-tail and domain-specific downstream tasks requiring factual, tabular, medical, and multimodal knowledge.
Knowledge enhanced pre-trained language models (K-PLMs) are shown to be effective for many public tasks in the literature but few of them have been successfully applied in practice. To address this problem, we propose K-AID, a systematic approach that includes a low-cost knowledge acquisition process for acquiring domain knowledge, an effective knowledge infusion module for improving model performance, and a knowledge distillation component for reducing the model size and deploying K-PLMs on resource-restricted devices (e.g., CPU) for real-world application. Importantly, instead of capturing entity knowledge like the majority of existing K-PLMs, our approach captures relational knowledge, which contributes to better-improving sentence-level text classification and text matching tasks that play a key role in question answering (QA). We conducted a set of experiments on five text classification tasks and three text matching tasks from three domains, namely E-commerce, Government, and Film&TV, and performed online A/B tests in E-commerce. Experimental results show that our approach is able to achieve substantial improvement on sentence-level question answering tasks and bring beneficial business value in industrial settings.
A sememe is defined as the minimum semantic unit of human languages. Sememe knowledge bases (KBs), which contain words annotated with sememes, have been successfully applied to many NLP tasks. However, existing sememe KBs are built on only a few languages, which hinders their widespread utilization. To address the issue, we propose to build a unified sememe KB for multiple languages based on BabelNet, a multilingual encyclopedic dictionary. We first build a dataset serving as the seed of the multilingual sememe KB. It manually annotates sememes for over $15$ thousand synsets (the entries of BabelNet). Then, we present a novel task of automatic sememe prediction for synsets, aiming to expand the seed dataset into a usable KB. We also propose two simple and effective models, which exploit different information of synsets. Finally, we conduct quantitative and qualitative analyses to explore important factors and difficulties in the task. All the source code and data of this work can be obtained on //github.com/thunlp/BabelNet-Sememe-Prediction.
Many natural language processing tasks solely rely on sparse dependencies between a few tokens in a sentence. Soft attention mechanisms show promising performance in modeling local/global dependencies by soft probabilities between every two tokens, but they are not effective and efficient when applied to long sentences. By contrast, hard attention mechanisms directly select a subset of tokens but are difficult and inefficient to train due to their combinatorial nature. In this paper, we integrate both soft and hard attention into one context fusion model, "reinforced self-attention (ReSA)", for the mutual benefit of each other. In ReSA, a hard attention trims a sequence for a soft self-attention to process, while the soft attention feeds reward signals back to facilitate the training of the hard one. For this purpose, we develop a novel hard attention called "reinforced sequence sampling (RSS)", selecting tokens in parallel and trained via policy gradient. Using two RSS modules, ReSA efficiently extracts the sparse dependencies between each pair of selected tokens. We finally propose an RNN/CNN-free sentence-encoding model, "reinforced self-attention network (ReSAN)", solely based on ReSA. It achieves state-of-the-art performance on both Stanford Natural Language Inference (SNLI) and Sentences Involving Compositional Knowledge (SICK) datasets.
ASR (automatic speech recognition) systems like Siri, Alexa, Google Voice or Cortana has become quite popular recently. One of the key techniques enabling the practical use of such systems in people's daily life is deep learning. Though deep learning in computer vision is known to be vulnerable to adversarial perturbations, little is known whether such perturbations are still valid on the practical speech recognition. In this paper, we not only demonstrate such attacks can happen in reality, but also show that the attacks can be systematically conducted. To minimize users' attention, we choose to embed the voice commands into a song, called CommandSong. In this way, the song carrying the command can spread through radio, TV or even any media player installed in the portable devices like smartphones, potentially impacting millions of users in long distance. In particular, we overcome two major challenges: minimizing the revision of a song in the process of embedding commands, and letting the CommandSong spread through the air without losing the voice "command". Our evaluation demonstrates that we can craft random songs to "carry" any commands and the modify is extremely difficult to be noticed. Specially, the physical attack that we play the CommandSongs over the air and record them can success with 94 percentage.